《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (10): 32-42, 53.doi: 10.6040/j.issn.1671-9352.0.2023.279
Gaihui GUO(),Jingjing WANG,Wangrui LI
摘要:
以时滞τ为分支参数, 通过分析特征方程, 给出时滞对正平衡点稳定性的影响以及Hopf分支产生的条件。利用规范型理论和中心流形定理, 得到Hopf分支方向和周期解稳定性的判定条件。最后借助数值模拟验证理论结果。
中图分类号:
1 |
KLAUSMEIER C A . Regular and irregular patterns in semiarid vegetation[J]. Science, 1999, 284 (5421): 1826- 1828.
doi: 10.1126/science.284.5421.1826 |
2 |
SHERRATT J A . An analysis of vegetation stripe formation in semi-arid landscapes[J]. Journal of Mathematical Biology, 2005, 51 (2): 183- 197.
doi: 10.1007/s00285-005-0319-5 |
3 |
SUN Guiquan , LI Li , ZHANG Zike . Spatial dynamics of a vegetation model in an arid flat environment[J]. Nonlinear Dynamics, 2013, 73, 2207- 2219.
doi: 10.1007/s11071-013-0935-3 |
4 |
XIE Boli . Pattern dynamics in a vegetation model with time delay[J]. Physica A: Statistical Mechanics and Its Applications, 2016, 443, 460- 466.
doi: 10.1016/j.physa.2015.09.075 |
5 |
WANG Xiaoli , SHI Junping , ZHANG Guohong . Bifurcation and pattern formation in diffusive Klausmeier-Gray-Scott model of water-plant interaction[J]. Journal of Mathematical Analysis and Applications, 2021, 497 (1): 124860.
doi: 10.1016/j.jmaa.2020.124860 |
6 |
DING Dawei , ZHANG Xiaoyun , WANG Nian , et al. Hybrid control of delay induced Hopf bifurcation of dynamical small-world network[J]. Journal of Shanghai Jiaotong University (Science), 2017, 22, 206- 215.
doi: 10.1007/s12204-017-1823-7 |
7 |
JIA Yunfeng . Bifurcation and pattern formation of a tumor-immune model with time-delay and diffusion[J]. Mathematics and Computers in Simulation, 2020, 178, 92- 108.
doi: 10.1016/j.matcom.2020.06.011 |
8 |
WU Shuhao , SONG Yongli . Stability and spatiotemporal dynamics in a diffusive predator-prey model with nonlocal prey competition[J]. Nonlinear Analysis: Real World Applications, 2019, 48, 12- 39.
doi: 10.1016/j.nonrwa.2019.01.004 |
9 | 郭改慧, 刘晓慧. 一类自催化可逆生化反应模型的Hopf分支及其稳定性[J]. 数学物理学报, 2021, 41 (1): 166- 177. |
GUO Gaihui , LIU Xiaohui . Hopf bifurcation and stability for an autocatalytic reversible biochemical reaction model[J]. Acta Mathematica Scientia, 2021, 41 (1): 166- 177. | |
10 |
XUE Qiang , SUN Guiquan , LIU Chen , et al. Spatiotemporal dynamics of a vegetation model with nonlocal delay in semi-arid environment[J]. Nonlinear Dynamics, 2020, 99 (4): 3407- 3420.
doi: 10.1007/s11071-020-05486-w |
11 |
YI F Q , GAFFNEY E A , SEIRIN-LEE S . The bifurcation analysis of turing pattern formation induced by delay and diffusion in the Schnakenberg system[J]. Discrete and Continuous Dynamical Systems(Series B), 2017, 22 (2): 647- 668.
doi: 10.3934/dcdsb.2017031 |
12 |
GUO Gaihui , LIU Le , LI Bingfang , et al. Qualitative analysis on positive steady-state solutions for an autocatalysis model with high order[J]. Nonlinear Analysis: Real World Applications, 2018, 41, 665- 691.
doi: 10.1016/j.nonrwa.2017.11.010 |
13 |
NIE Hua , SHI Yao , WU Jianhua . The effect of diffusion on the dynamics of a predator-prey chemostat model[J]. SIAM Journal on Applied Mathematics, 2022, 82 (3): 821- 848.
doi: 10.1137/21M1432090 |
14 |
SHI Qingyan , SHI Junping , SONG Yongli . Hopf bifurcation in a reaction-diffusion equation with distributed delay and Dirichlet boundary condition[J]. Journal of Differential Equations, 2017, 263 (10): 6537- 6575.
doi: 10.1016/j.jde.2017.07.024 |
15 | 伏升茂, 苏发儒. 带恐惧因子和强Allee效应的捕食者-食饵扩散模型的Hopf分支[J]. 西北师范大学学报(自然科学版), 2019, 55 (3): 14- 20. |
FU Shengmao , SU Faru . Hopf bifurcation of a predator-prey diffusive model with fear factor and strong Allee effect[J]. Journal of Northwest Normal University (Natural Science Edition), 2019, 55 (3): 14- 20. | |
16 | WU Jianhong . Theory and applications of partial functional differential equations[M]. New York: Springer, 1996: 183- 243. |
17 |
KABIR M H , GANI M O . Numerical bifurcation analysis and pattern formation in a minimal reaction-diffusion model for vegetation[J]. Journal of Theoretical Biology, 2022, 536, 110997.
doi: 10.1016/j.jtbi.2021.110997 |
18 |
YANG Ruizhi , WEI Junjie . The effect of delay on a diffusive predator-prey system with modified Leslie-Gower functional response[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2017, 40, 51- 73.
doi: 10.1007/s40840-015-0261-7 |
19 |
CHANG Xiaoyuan , WEI Junjie . Hopf bifurcation and optimal control in a diffusive predator-prey system with time delay and prey harvesting[J]. Nonlinear Analysis: Modelling and Control, 2012, 17 (4): 379- 409.
doi: 10.15388/NA.17.4.14046 |
[1] | 贺子鹏,董亚莹. 一类异质环境下Holling Ⅱ型竞争模型的稳态解[J]. 《山东大学学报(理学版)》, 2023, 58(8): 73-81. |
[2] | 王雅迪,袁海龙. 时滞Lengyel-Epstein反应扩散系统的Hopf分支[J]. 《山东大学学报(理学版)》, 2023, 58(8): 92-103. |
[3] | 倪云,刘锡平. 适型分数阶耦合系统正解的存在性和Ulam稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(8): 82-91. |
[4] | 胡玉文,徐久成,张倩倩. 决策演化集的李雅普诺夫稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(7): 52-59. |
[5] | 刘云,朱鹏俊,陈路遥,宋凯. 基于边缘计算的收益激励算法对区块链分片的优化[J]. 《山东大学学报(理学版)》, 2023, 58(7): 88-96. |
[6] | 孙盼,张旭萍. 具有无穷时滞脉冲发展方程解的连续依赖性[J]. 《山东大学学报(理学版)》, 2023, 58(6): 77-83, 91. |
[7] | 许越,韩晓玲. 具有双时滞的媒体效应对西藏地区包虫病控制的影响[J]. 《山东大学学报(理学版)》, 2023, 58(5): 53-62. |
[8] | 黄钰,高广花. 第三类Dirichlet边界下四阶抛物方程的紧差分格式[J]. 《山东大学学报(理学版)》, 2023, 58(4): 16-28. |
[9] | 李永花,张存华. 具有Dirichlet边界条件的单种群时滞反应扩散模型的稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(10): 122-126. |
[10] | 陈刚,张睿. 一类具有预防接种的两菌株共感模型的传染病动力学分析[J]. 《山东大学学报(理学版)》, 2023, 58(10): 84-96. |
[11] | 李蕾,叶永升. 具有Dirichlet有界条件的反应扩散Cohen-Grossberg神经网络指数稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(10): 67-74. |
[12] | 李晓伟,李桂花. 考虑环境病毒影响的COVID-19模型的动力学性态研究[J]. 《山东大学学报(理学版)》, 2023, 58(1): 10-15. |
[13] | 霍林杰,张存华. 具有Holling-Ⅲ型功能反应的捕食扩散系统的稳定性和Hopf分支[J]. 《山东大学学报(理学版)》, 2023, 58(1): 16-24. |
[14] | 孙春杰,张存华. 一类Beddington-DeAngelis-Tanner型扩散捕食系统的稳定性和Turing不稳定性[J]. 《山东大学学报(理学版)》, 2022, 57(9): 83-90. |
[15] | 苏晓艳,陈京荣,尹会玲. 广义区间值Pythagorean三角模糊集成算子及其决策应用[J]. 《山东大学学报(理学版)》, 2022, 57(8): 77-87. |
|