《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (10): 67-74.doi: 10.6040/j.issn.1671-9352.0.2023.157
摘要:
通过构造合适的Lyapunov泛函并结合数学分析技巧,讨论一类具有Dirichlet边界条件的基于马尔可夫切换的脉冲时滞反应扩散Cohen-Grossberg神经网络模型的指数稳定性。利用不等式技术和随机分析理论,得到了神经网络的指数稳定的若干充分判据。最后通过算例验证了所得到结果的有效性。
中图分类号:
1 |
CHUA L O , YANG L . Cellular neural networks: applications[J]. IEEE Transactions on Biomedical Circuits and Systems, 1988, 35 (10): 1273- 1290.
doi: 10.1109/31.7601 |
2 |
ZENG Z G , WANG J . Design and analysis of high-capacity associative memories based on a class of discrete-time recurrent neural networks[J]. IEEE Transactions on Systems Man Cybernetics, Part B: Cybernetics, 2008, 38 (6): 1525- 1536.
doi: 10.1109/TSMCB.2008.927717 |
3 |
LIU Q S , WANG J . A projection neural network for constrained quadratic minimax optimization[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26 (11): 2891- 2900.
doi: 10.1109/TNNLS.2015.2425301 |
4 |
CAO J D , WANG J . Global asymptotic stability of a general class of recurrent neural networks with time-varying delays[J]. IEEE Transactions on Circuits and Systems—I fundamental Theory Applications, 2003, 50 (1): 34- 44.
doi: 10.1109/TCSI.2002.807494 |
5 | ZENG Z G , WANG J , LIAO X X . Global exponential stability of a general class of recurrent neural networks with time-varying delays[J]. IEEE Transactions on Systems Man Cybernetics, Part B: Cybernetics, 2003, 50 (10): 1353- 1358. |
6 |
LIU P , ZENG Z G , WANG J . Multiple Mittag-Leffler stability of fractional-order recurrent neural networks[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47 (8): 2279- 2288.
doi: 10.1109/TSMC.2017.2651059 |
7 |
WANG J L , QIN Z , WU H N , et al. Analysis and pinning control for output synchronization and H∞ output synchronization of multi-weighted complex networks[J]. IEEE Transactions on Cybernetics, 2019, 49 (4): 1314- 1326.
doi: 10.1109/TCYB.2018.2799969 |
8 |
WANG J L , XU M , WU H N , et al. Passivity analysis and pinning control of multi-weighted complex dynamical networks[J]. IEEE Transactions on Network Science and Engineering, 2019, 6 (1): 60- 73.
doi: 10.1109/TNSE.2017.2771267 |
9 |
WANG J L , WU H N , HUANG T W , et al. Passivity and output synchronization of complex dynamical networks with fixed and adaptive coupling strength[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29 (2): 364- 376.
doi: 10.1109/TNNLS.2016.2627083 |
10 |
HU C , JIANG H , TENG Z . Impulsive control and synchronization for delayed neural networks with reaction-diffusion terms[J]. IEEE Transactions on Neural Networks and Learning Systems, 2010, 21 (1): 67- 81.
doi: 10.1109/TNN.2009.2034318 |
11 |
CHEN W H , LUO S , ZHENG W X . Impulsive synchronization of reaction-diffusion neural networks with mixed delays and its application to image encryption[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27 (12): 2696- 2710.
doi: 10.1109/TNNLS.2015.2512849 |
12 |
ZHANG H , ZENG Z , HAN Q L . Synchronization of multiple reaction-diffusion neural networks with heterogeneous and unbounded time-varying delays[J]. IEEE Transactions on Cybernetics, 2019, 49 (8): 2980- 2991.
doi: 10.1109/TCYB.2018.2837090 |
13 |
LV Y , HU C , YU J , et al. Edge-based fractional order adaptive strategies for synchronization of fractional-order coupled networks with reaction-diffusion terms[J]. IEEE Transactions on Cybernetics, 2020, 50 (4): 1582- 1594.
doi: 10.1109/TCYB.2018.2879935 |
14 |
TU Z , DING N , LI L , et al. Adaptive synchronization of memristive neural networks with time-varying delays and reaction-diffusion term[J]. Applied Mathematics and Computation, 2017, 311, 118- 128.
doi: 10.1016/j.amc.2017.05.005 |
15 | EVANS L C . Partial differential equation[M]. 2nd ed. Berkeley: American Mathematical Society, 1998. |
16 |
CAO Y Y , CAO Y T , WEN S P , et al. Passivity analysis of delayed reaction-diffusion memristor-based neural networks[J]. Neural Networks, 2019, 109, 159- 167.
doi: 10.1016/j.neunet.2018.10.004 |
17 |
LI R X , CAO J D . Stability analysis of reaction-diffusion uncertain memristive neural networks with time-varying delays and leakage term[J]. Applied Mathematics and Computation, 2016, 278, 54- 69.
doi: 10.1016/j.amc.2016.01.016 |
18 |
WU H Q , ZHANG X W , LI R X , et al. Adaptive anti-synchronization and H∞ anti-synchronization for memristive neural networks with mixed time delays and reaction-diffusion terms[J]. Neurocomputing, 2015, 168, 726- 740.
doi: 10.1016/j.neucom.2015.05.051 |
19 |
SHI G D , MA Q . Synchronization of stochastic Markovian jump neural networks with reaction-diffusion terms[J]. Neurocomputing, 2012, 77 (1): 275- 280.
doi: 10.1016/j.neucom.2011.08.024 |
20 |
ZHU Q X . pth moment exponential stability of impulsive stochastic functional differential equations with Markovian switching[J]. Journal of the Franklin Institute, 2014, 351 (7): 3965- 3986.
doi: 10.1016/j.jfranklin.2014.04.001 |
21 |
ZHU Q X . Razumikhin-type theorem for stochastic functional differential equations with Lévy noise and Markov switching[J]. International Journal of Control, 2017, 90 (8): 1703- 1712.
doi: 10.1080/00207179.2016.1219069 |
22 | ZHANG Y , LUO Q . Novel stability criteria for impulsive delayed reaction-diffusion Cohen-Grossberg neural networks via Hardy-Poincarè inequality[J]. Chaos, Solitons & Fractals, 2012, 45 (8): 1033- 1040. |
23 |
LI X D , CAO J D . An impulsive delay inequality involving unbounded time varying delay and applications[J]. IEEE Transactions on Automatic Control, 2017, 62 (7): 3618- 3625.
doi: 10.1109/TAC.2017.2669580 |
24 |
WANG X , LI C D , HUANG T W . Impulsive exponential synchronization of randomly coupled neural networks with Markovian jumping and mixed model-dependent time delays[J]. Neural Networks, 2014, 60, 25- 32.
doi: 10.1016/j.neunet.2014.07.008 |
25 |
LU J G . Global exponential stability and periodicity of reaction-diffusion delayed recurrent neural networks with Dirichlet boundary conditions[J]. Chaos, Solitons and Fractals, 2008, 35 (1): 116- 125.
doi: 10.1016/j.chaos.2007.05.002 |
[1] | 王雅迪,袁海龙. 时滞Lengyel-Epstein反应扩散系统的Hopf分支[J]. 《山东大学学报(理学版)》, 2023, 58(8): 92-103. |
[2] | 李莉,杨和. 二阶脉冲发展方程非局部问题mild解的存在性[J]. 《山东大学学报(理学版)》, 2023, 58(6): 57-67. |
[3] | 孙盼,张旭萍. 具有无穷时滞脉冲发展方程解的连续依赖性[J]. 《山东大学学报(理学版)》, 2023, 58(6): 77-83, 91. |
[4] | 许越,韩晓玲. 具有双时滞的媒体效应对西藏地区包虫病控制的影响[J]. 《山东大学学报(理学版)》, 2023, 58(5): 53-62. |
[5] | 郭改慧,王晶晶,李旺瑞. 一类具有时滞的植被-水反应扩散模型的Hopf分支[J]. 《山东大学学报(理学版)》, 2023, 58(10): 32-42, 53. |
[6] | 李永花,张存华. 具有Dirichlet边界条件的单种群时滞反应扩散模型的稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(10): 122-126. |
[7] | 庞玉婷,赵东霞,鲍芳霞. 具有多时滞和多参数的双向环状网络的稳定性[J]. 《山东大学学报(理学版)》, 2022, 57(8): 103-110. |
[8] | 王苗苗,丁小丽,李佳敏. 分数阶随机时滞微分方程的波形松弛方法[J]. 《山东大学学报(理学版)》, 2022, 57(1): 101-110. |
[9] | 沈维,张存华. 时滞食饵-捕食系统的多次稳定性切换和Hopf分支[J]. 《山东大学学报(理学版)》, 2022, 57(1): 42-49. |
[10] | 原田娇,李强. 一类脉冲发展方程IS-渐近周期mild解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(6): 10-21. |
[11] | 魏立祥,张建刚,南梦冉,张美娇. 具有时滞的磁通神经元模型的稳定性及Hopf分岔[J]. 《山东大学学报(理学版)》, 2021, 56(5): 12-22. |
[12] | 马维凤,陈鹏玉. 状态依赖型时滞微分方程的解流形及其C1-光滑性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 92-96. |
[13] | 马德青,胡劲松. 消费者参考质量存在时滞效应的动态质量改进策略[J]. 《山东大学学报(理学版)》, 2020, 55(9): 101-89. |
[14] | 章欢,李永祥. 含时滞导数项的高阶常微分方程的正周期解[J]. 《山东大学学报(理学版)》, 2019, 54(4): 29-36. |
[15] | 张申贵. 变分方法对变指数脉冲微分系统的应用[J]. 《山东大学学报(理学版)》, 2019, 54(4): 22-28. |
|