您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (5): 53-62.doi: 10.6040/j.issn.1671-9352.0.2022.329

• • 上一篇    

具有双时滞的媒体效应对西藏地区包虫病控制的影响

许越,韩晓玲*   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 发布日期:2023-05-15
  • 作者简介:许越(1993— ), 男, 硕士研究生, 研究方向为常微分方程边值问题及其应用. E-mail:1206485579@qq.com*通信作者简介:韩晓玲(1978— ), 女, 博士, 教授, 研究方向为常微分方程边值问题及其应用. E-mail:hanxiaoling9@163.com
  • 基金资助:
    国家自然科学基金资助项目(12161079);甘肃省自然科学基金资助项目(20JR10RA086)

Impact of media effects with dual delays on control of echinococcosis in Tibet

XU Yue, HAN Xiaoling*   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2023-05-15

摘要: 通过对包虫病传播机制以及西藏地区包虫病流行状况的研究,建立了一类含有媒体效应的多时滞包虫病传播模型,研究了模型的稳定性、一致持续性以及产生Hopf分岔的条件,并结合西藏地区的数据进行数值模拟,验证了媒体效应在疾病控制中起到的重要作用以及时滞大小对模型稳定性的影响,最后针对防控策略给出了合理的建议。

关键词: 包虫病, 动力学模型, 多时滞, Hopf分岔

Abstract: Based on the study of the transmission mechanism of echinococcosis and the epidemic situation of echinococcosis in Tibet, a multiple time-delays echinococcosis transmission model with media effect is established. The stability of the model, uniform persistence and the conditions of Hopf bifurcation are studied and numerical simulation is performed on the data from Tibet, to verify the significance of the media effect on disease control and the influence of time lag on the stability of the model. Finally, reasonable suggestions are given for the prevention and control.

Key words: echinococcosis, dynamic model, multiple delays, Hopf bifurcation

中图分类号: 

  • O175.13
[1] 陈伟奇,张雅兰,贡桑曲珍,等.西藏自治区棘球蚴病病例分析[J].中国寄生虫学与寄生虫病杂志,2018,36(1):43-46. CHEN Weiqi, ZHANG Yalan, GongSang Quzhen, et al. Analysis of hydatid disease cases in Tibet Autonomous Region[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2018, 36(1):43-46.
[2] 韩帅,蒉嫣,薛垂召,等.2004—2020年全国棘球蚴病疫情分析[J].中国寄生虫学与寄生虫病杂志,2021,39(5):1-6. HAN Shai, KUAI Yan, XUE Chuizhao, et al. The endemic status of echinococcosis in China from 2004 to 2020[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2021, 39(5):1-6.
[3] 伍卫平,王虎,王谦,等.2012—2016年中国棘球蚴病抽样调查分析[J].中国寄生虫学与寄生虫病杂志,2018,36(1):1-14. WU Weiping, WANG Hu, WANG Qian, et al. A nationwide sampling survey on echinococcosis in China during 2012-2016[J].Chinese Journal of Parasitology and Parasitic Diseases, 2018, 36(1):1-14.
[4] 刘平,吴海荣,张伟超,等.我国西部地区农牧民包虫病防控认知情况及其影响因素[J].中国动物检疫,2021,38(5):1-4. LIU Ping, WU Hairong, ZHANG Weichao, et al. Awareness of herdsmen for the prevention and control of echinococcosis and potential risk factors in Western China[J]. China Animal Health Inspection, 2021, 38(5):1-4.
[5] BURLET P, DEPLAZES P, HEGGLIN D. Age, season and spatio-temporal factors affecting the prevalence of Echinococcus multilocularis and Taenia taeniaeformis in Arvicola terrestris[J]. Parasit Vectors, 2011, 4:6-20.
[6] NISHINA T, ISHIKAWA H. A stochastic model of Echinococcus multilocularis transmission in Hokkaido, Japan, focusing on the infection process[J]. Parasitology Research, 2008, 102:465-479.
[7] HANSEN F, TACKMANN K, JELTSCH F, et al. Controlling Echinococcus multilocularis ecological implications of field trials[J]. Preventive Veterinary Medicine, 2003, 60(1):91-105.
[8] VERVAEKE M, DAVIS S, LEIRS H, et al. Implications of increased susceptibility to predation for managing the sylvatic cycle of Echinococcus multilocularis[J]. Parasitology, 2006, 132(6):893-901.
[9] HASSAN A S, MUNGANGA J M W. Mathematical global dynamics and control strategies on Echinococcus multilocularis infection[J]. Computational and Mathematical Methods in Medicine, 2019, 2019:1-17.
[10] KHAN A, AHMED H, SOHAIL A, et al. A mathematical modelling approach for treatment and control of Echinococcus multilocularis[J]. Parasitology, 2020, 147(3):376-381.
[11] RONG Xinmiao, FAN Meng, SUN Xiangdong, et al. Impact of disposing stray dogs on risk assessment and control of Echinococcosis in Inner Mongolia[J]. Mathematical Biosciences, 2018, 299:85-96.
[12] LIU Rongson, WU Jianhong, ZHU Huaiping. Media/psychological impact on multiple outbreaks of emerging infectious diseases[J]. Computational and Mathematical Methods in Medicine, 2007, 8(3):153-164.
[1] 庞玉婷,赵东霞,鲍芳霞. 具有多时滞和多参数的双向环状网络的稳定性[J]. 《山东大学学报(理学版)》, 2022, 57(8): 103-110.
[2] 魏立祥,张建刚,南梦冉,张美娇. 具有时滞的磁通神经元模型的稳定性及Hopf分岔[J]. 《山东大学学报(理学版)》, 2021, 56(5): 12-22.
[3] 乔帅,安新磊,王红梅,张薇. 电磁感应下HR神经元模型的分岔分析与控制[J]. 《山东大学学报(理学版)》, 2020, 55(9): 1-9.
[4] 白宝丽,张建刚,杜文举,闫宏明. 一类随机的SIR流行病模型的动力学行为分析[J]. 山东大学学报(理学版), 2017, 52(4): 72-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!