您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (5): 12-22.doi: 10.6040/j.issn.1671-9352.0.2020.586

• • 上一篇    

具有时滞的磁通神经元模型的稳定性及Hopf分岔

魏立祥,张建刚*,南梦冉,张美娇   

  1. 兰州交通大学数理学院, 甘肃 兰州 730070
  • 发布日期:2021-05-13
  • 作者简介:魏立祥(1996— ),男,硕士研究生,研究方向为非线性动力学. E-mail:wlx10763073376@126.com*通信作者简介:张建刚(1978— ),男,博士,教授,研究方向为非线性动力学. E-mail:zhangjg7715776@126.com
  • 基金资助:
    国家自然科学基金资助项目(61863022,11962012)

Stability and Hopf bifurcation of a flux neuron model with time delay

WEI Li-xiang, ZHANG Jian-gang*, NAN Meng-ran, ZHANG Mei-jiao   

  1. School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
  • Published:2021-05-13

摘要: 提出一个含磁控忆阻器的时滞磁通神经元模型,研究时滞和外部刺激电流对该模型动力学行为的影响。利用Routh-Hurwitz判据讨论该模型在平衡点处的稳定性,并利用中心流形定理进一步研究该模型在临界点处Hopf分岔的稳定性。通过数值模拟,得到在不同时滞下该模型的时间序列图及单双参分岔图。当改变时滞和外部强迫电流时,发现该模型存在多种放电模式,通过选择合适的时滞或外部强迫电流得到系统的静息态、尖峰放电态和周期簇放电态,这有助于解释电磁辐射所导致的大脑或神经中枢异常放电行为。

关键词: 磁控忆阻器, 时滞, 外部刺激电流, Hopf分岔, 电磁辐射, 双参数分岔

Abstract: A time-delayed flux neuron model with magnetically controlled memristor to study the effects of time delay and external stimulation current on the dynamic behavior of the model is put forward. The stability of the model at the equilibrium point is discussed by using the Routh-Hurwitz criterion and the stability of the Hopf bifurcation at the critical point is further studied by using the central manifold theorem. By numerical stimulation, the time series and single-double bifurcation diagrams of the model with different time delays. When the time lag and external forcing current are changed, it is found that there are many discharge patterns in the model. By selecting appropriate time lag or external forcing current, the resting state, spiking state and periodic bursting state are obtained, which is conducive to explain the abnormal discharge behavior of brain or nerve center caused by electromagnetic radiation.

Key words: magnetically controlled memristors, time delay, external stimulation current, Hopf bifurcation, electromagnetic radiation, two parameter bifurcation

中图分类号: 

  • O441.4
[1] HODGKIN A L, HUXLEY A F. A quantitative description of membrane current and its application to conduction and excitation in nerve[J]. The Journal of Physiology, 1952, 117(4):500-544.
[2] HINDMARSH J L, ROSE R M. A model of the nerve impulse using two first-order differential equations[J]. Nature, 1982, 296(5853):162-164.
[3] MOUJAHID A, DANJOU A, TORREALDEA F J, et al. Efficient synchronization of structurally adaptive coupled Hindmarsh-Rose neurons[J]. Chaos, Solitons and Fractals, 2011, 44(11):929-933.
[4] RECH C P. Dynamics in theparameter space of a neuron model[J]. Chinese Physics Letters, 2012, 29(6):60506-60509.
[5] GU Huaguang, PAN Baobao. A four-dimensional neuronal model to describe the complex nonlinear dynamics observed in the firing patterns of a sciatic nerve chronic constriction injury model[J]. Nonlinear Dynamics, 2015, 81(4):2107-2126.
[6] LV Mi, WANG Chunni, MA Jun, et al. Model of electrical activity in a neuron under magnetic flow effect[J]. Nonlinear Dynamics, 2016, 85(3):1479-1490.
[7] WU Fuqiang, WANG Chunni, MA Jun, et al. Model of electrical activity in cardiac tissue under electromagnetic induction[J]. Scientific Reports, 2016, 6(1):8-19.
[8] WANG Ya, MA Jun, XU Ying, et al. The electrical activity of neurons subject to electromagnetic induction and Gaussian white noise[J]. International Journal of Bifurcation and Chaos, 2017, 27(2):1750030-1750041.
[9] 乔帅,安新磊,王红梅,等. 磁通e-HR神经元隐藏放电与分岔行为的研究[J]. 云南大学学报(自然科学版), 2020, 42(4):685-694. QIAO Shuai, AN Xinlei, WANG Hongmei, et al. Hidden discharge and bifurcation behavior of magnetic flux e-HR neurons[J]. Journal of Yunnan University(Natural Sciences Edition), 2020, 42(4):685-694.
[10] TANG Keming, WANG Zuolei, SHI Xuerong. Electrical activity in a time-delay four-variable neuron model under electromagnetic induction[J]. Frontiers in Computational Neuroscience, 2017, 11:105-112.
[11] 张艳娇,李美生,陆启韶. ML神经元的放电模式及时滞对神经元同步的影响[J]. 动力学与控制学报, 2009, 7(1):19-23. ZHANG Yanjiao, LI Meisheng, LU Qishao. Firing patterns and the effect of time-delay coupling on synchronization of two coupled chaotic ML neurons[J]. Journal of Dynamics Control, 2009, 7(1):19-23.
[12] AL-HUSSEIN A B A, RAHMA F, JAFARI S. Hopf bifurcation and chaos in time-delay model of glucose-insulin regulatory system[J]. Chaos, Solitons and Fractals, 2020, 137:109845-109852.
[13] 于欢欢,安新磊,路正玉,等. 具有时滞磁通神经元模型的Hopf分岔分析[J].吉林大学学报(理学版), 2019, 57(5):1111-1121. YU Huanhuan, AN Xinlei, LU Zhengyu, et al. Hopf bifurcation analysis of flux neuron model with time delays[J]. Journal of Jilin University(Science Edition), 2019, 57(5):1111-1121.
[14] ZHANG Z Z, KUNDU S, TRIPATHI J P, et al. Stability and Hopf bifurcation analysis of an SVEIR epidemic model with vaccination and multiple time delays[J]. Chaos, Solitons and Fractals, 2020, 131:109483-109499.
[15] JUNGES L, GALLAS A C J. Stability diagrams for continuous wide-range control of two mutually delay-coupled semiconductor lasers[J]. New Journal of Physics, 2015, 17(5):53038-53049.
[16] JUNGES L, PÖSCHEL T, GALLAS A C J. Characterization of the stability of semiconductor lasers with delayed feedback according to the Lang-Kobayashi model[J]. The European Physical Journal D, 2013, 67(7):1-9.
[1] 马维凤,陈鹏玉. 状态依赖型时滞微分方程的解流形及其C1-光滑性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 92-96.
[2] 乔帅,安新磊,王红梅,张薇. 电磁感应下HR神经元模型的分岔分析与控制[J]. 《山东大学学报(理学版)》, 2020, 55(9): 1-9.
[3] 王红梅,安新磊,乔帅,张薇. e-HR神经元模型分岔分析与同步控制[J]. 《山东大学学报(理学版)》, 2020, 55(9): 10-18.
[4] 马德青,胡劲松. 消费者参考质量存在时滞效应的动态质量改进策略[J]. 《山东大学学报(理学版)》, 2020, 55(9): 101-89.
[5] 慕娜娜,安新磊,续浩南. 含两个忆阻器的隐藏吸引子及其Hamilton能量控制[J]. 《山东大学学报(理学版)》, 2019, 54(9): 91-97.
[6] 章欢,李永祥. 含时滞导数项的高阶常微分方程的正周期解[J]. 《山东大学学报(理学版)》, 2019, 54(4): 29-36.
[7] 罗强,韩晓玲,杨忠贵. 三阶时滞微分方程边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 33-39.
[8] 李乐乐,贾建文. 具有时滞影响的SIRC传染病模型的Hopf分支分析[J]. 《山东大学学报(理学版)》, 2019, 54(1): 116-126.
[9] 陈雨佳, 杨和. 一类三阶时滞微分方程在Banach空间中的周期解的存在性[J]. 山东大学学报(理学版), 2018, 53(8): 84-94.
[10] 董兴林,齐欣. 基于时滞效应的青岛市两阶段科技投入与产出互动关系[J]. 山东大学学报(理学版), 2018, 53(5): 80-87.
[11] 陈丽,林玲. 具有时滞效应的股票期权定价[J]. 山东大学学报(理学版), 2018, 53(4): 36-41.
[12] 张道祥,孙光讯,马媛,陈金琼,周文. 带有Holling-III功能反应和线性收获效应的时滞扩散捕食者-食饵系统Hopf分支和空间斑图[J]. 山东大学学报(理学版), 2018, 53(4): 85-94.
[13] 白宝丽,张建刚,杜文举,闫宏明. 一类随机的SIR流行病模型的动力学行为分析[J]. 山东大学学报(理学版), 2017, 52(4): 72-82.
[14] 高荣,张焕水. 离散时间多输入时滞随机系统的镇定性[J]. 山东大学学报(理学版), 2017, 52(4): 105-110.
[15] 鞠培军,王伟. 多输入多输出线性系统的时滞界问题[J]. 山东大学学报(理学版), 2017, 52(11): 60-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!