《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (5): 12-22.doi: 10.6040/j.issn.1671-9352.0.2020.586
• • 上一篇
魏立祥,张建刚*,南梦冉,张美娇
WEI Li-xiang, ZHANG Jian-gang*, NAN Meng-ran, ZHANG Mei-jiao
摘要: 提出一个含磁控忆阻器的时滞磁通神经元模型,研究时滞和外部刺激电流对该模型动力学行为的影响。利用Routh-Hurwitz判据讨论该模型在平衡点处的稳定性,并利用中心流形定理进一步研究该模型在临界点处Hopf分岔的稳定性。通过数值模拟,得到在不同时滞下该模型的时间序列图及单双参分岔图。当改变时滞和外部强迫电流时,发现该模型存在多种放电模式,通过选择合适的时滞或外部强迫电流得到系统的静息态、尖峰放电态和周期簇放电态,这有助于解释电磁辐射所导致的大脑或神经中枢异常放电行为。
中图分类号:
[1] HODGKIN A L, HUXLEY A F. A quantitative description of membrane current and its application to conduction and excitation in nerve[J]. The Journal of Physiology, 1952, 117(4):500-544. [2] HINDMARSH J L, ROSE R M. A model of the nerve impulse using two first-order differential equations[J]. Nature, 1982, 296(5853):162-164. [3] MOUJAHID A, DANJOU A, TORREALDEA F J, et al. Efficient synchronization of structurally adaptive coupled Hindmarsh-Rose neurons[J]. Chaos, Solitons and Fractals, 2011, 44(11):929-933. [4] RECH C P. Dynamics in theparameter space of a neuron model[J]. Chinese Physics Letters, 2012, 29(6):60506-60509. [5] GU Huaguang, PAN Baobao. A four-dimensional neuronal model to describe the complex nonlinear dynamics observed in the firing patterns of a sciatic nerve chronic constriction injury model[J]. Nonlinear Dynamics, 2015, 81(4):2107-2126. [6] LV Mi, WANG Chunni, MA Jun, et al. Model of electrical activity in a neuron under magnetic flow effect[J]. Nonlinear Dynamics, 2016, 85(3):1479-1490. [7] WU Fuqiang, WANG Chunni, MA Jun, et al. Model of electrical activity in cardiac tissue under electromagnetic induction[J]. Scientific Reports, 2016, 6(1):8-19. [8] WANG Ya, MA Jun, XU Ying, et al. The electrical activity of neurons subject to electromagnetic induction and Gaussian white noise[J]. International Journal of Bifurcation and Chaos, 2017, 27(2):1750030-1750041. [9] 乔帅,安新磊,王红梅,等. 磁通e-HR神经元隐藏放电与分岔行为的研究[J]. 云南大学学报(自然科学版), 2020, 42(4):685-694. QIAO Shuai, AN Xinlei, WANG Hongmei, et al. Hidden discharge and bifurcation behavior of magnetic flux e-HR neurons[J]. Journal of Yunnan University(Natural Sciences Edition), 2020, 42(4):685-694. [10] TANG Keming, WANG Zuolei, SHI Xuerong. Electrical activity in a time-delay four-variable neuron model under electromagnetic induction[J]. Frontiers in Computational Neuroscience, 2017, 11:105-112. [11] 张艳娇,李美生,陆启韶. ML神经元的放电模式及时滞对神经元同步的影响[J]. 动力学与控制学报, 2009, 7(1):19-23. ZHANG Yanjiao, LI Meisheng, LU Qishao. Firing patterns and the effect of time-delay coupling on synchronization of two coupled chaotic ML neurons[J]. Journal of Dynamics Control, 2009, 7(1):19-23. [12] AL-HUSSEIN A B A, RAHMA F, JAFARI S. Hopf bifurcation and chaos in time-delay model of glucose-insulin regulatory system[J]. Chaos, Solitons and Fractals, 2020, 137:109845-109852. [13] 于欢欢,安新磊,路正玉,等. 具有时滞磁通神经元模型的Hopf分岔分析[J].吉林大学学报(理学版), 2019, 57(5):1111-1121. YU Huanhuan, AN Xinlei, LU Zhengyu, et al. Hopf bifurcation analysis of flux neuron model with time delays[J]. Journal of Jilin University(Science Edition), 2019, 57(5):1111-1121. [14] ZHANG Z Z, KUNDU S, TRIPATHI J P, et al. Stability and Hopf bifurcation analysis of an SVEIR epidemic model with vaccination and multiple time delays[J]. Chaos, Solitons and Fractals, 2020, 131:109483-109499. [15] JUNGES L, GALLAS A C J. Stability diagrams for continuous wide-range control of two mutually delay-coupled semiconductor lasers[J]. New Journal of Physics, 2015, 17(5):53038-53049. [16] JUNGES L, PÖSCHEL T, GALLAS A C J. Characterization of the stability of semiconductor lasers with delayed feedback according to the Lang-Kobayashi model[J]. The European Physical Journal D, 2013, 67(7):1-9. |
[1] | 马维凤,陈鹏玉. 状态依赖型时滞微分方程的解流形及其C1-光滑性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 92-96. |
[2] | 乔帅,安新磊,王红梅,张薇. 电磁感应下HR神经元模型的分岔分析与控制[J]. 《山东大学学报(理学版)》, 2020, 55(9): 1-9. |
[3] | 王红梅,安新磊,乔帅,张薇. e-HR神经元模型分岔分析与同步控制[J]. 《山东大学学报(理学版)》, 2020, 55(9): 10-18. |
[4] | 马德青,胡劲松. 消费者参考质量存在时滞效应的动态质量改进策略[J]. 《山东大学学报(理学版)》, 2020, 55(9): 101-89. |
[5] | 慕娜娜,安新磊,续浩南. 含两个忆阻器的隐藏吸引子及其Hamilton能量控制[J]. 《山东大学学报(理学版)》, 2019, 54(9): 91-97. |
[6] | 章欢,李永祥. 含时滞导数项的高阶常微分方程的正周期解[J]. 《山东大学学报(理学版)》, 2019, 54(4): 29-36. |
[7] | 罗强,韩晓玲,杨忠贵. 三阶时滞微分方程边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 33-39. |
[8] | 李乐乐,贾建文. 具有时滞影响的SIRC传染病模型的Hopf分支分析[J]. 《山东大学学报(理学版)》, 2019, 54(1): 116-126. |
[9] | 陈雨佳, 杨和. 一类三阶时滞微分方程在Banach空间中的周期解的存在性[J]. 山东大学学报(理学版), 2018, 53(8): 84-94. |
[10] | 董兴林,齐欣. 基于时滞效应的青岛市两阶段科技投入与产出互动关系[J]. 山东大学学报(理学版), 2018, 53(5): 80-87. |
[11] | 陈丽,林玲. 具有时滞效应的股票期权定价[J]. 山东大学学报(理学版), 2018, 53(4): 36-41. |
[12] | 张道祥,孙光讯,马媛,陈金琼,周文. 带有Holling-III功能反应和线性收获效应的时滞扩散捕食者-食饵系统Hopf分支和空间斑图[J]. 山东大学学报(理学版), 2018, 53(4): 85-94. |
[13] | 白宝丽,张建刚,杜文举,闫宏明. 一类随机的SIR流行病模型的动力学行为分析[J]. 山东大学学报(理学版), 2017, 52(4): 72-82. |
[14] | 高荣,张焕水. 离散时间多输入时滞随机系统的镇定性[J]. 山东大学学报(理学版), 2017, 52(4): 105-110. |
[15] | 鞠培军,王伟. 多输入多输出线性系统的时滞界问题[J]. 山东大学学报(理学版), 2017, 52(11): 60-64. |
|