您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (2): 92-96.doi: 10.6040/j.issn.1671-9352.0.2020.084

• • 上一篇    

状态依赖型时滞微分方程的解流形及其C1-光滑性

马维凤,陈鹏玉*   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 发布日期:2021-01-21
  • 作者简介:马维凤(1995— ),女,硕士研究生,研究方向为非线性分析与抽象空间常微分方程. E-mail:1513845877@qq.com*通信作者简介:陈鹏玉(1986— ),男,博士,副教授,硕士生导师,研究方向为非线性分析与抽象空间常微分方程. E-mail:chpengyu123@163.com
  • 基金资助:
    国家自然科学基金资助项目(12061063);西北师范大学青年教师科研能力提升计划资助项目(NWNU-LKQN2019-3)

Solution manifold and its C1-smoothness for differential equations with state-dependent delay

MA Wei-feng, CHEN Peng-yu*   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2021-01-21

摘要: 在非线性函数满足Lipschitz连续的条件下,研究了有限维空间中状态依赖型时滞微分方程的解流形及其C1-光滑性。

关键词: 状态依赖型时滞, 非线性函数, 解流形, Lipschitz 连续, C1-光滑性

Abstract: This paper investigates the existence of solution manifolds and its C1-smoothness for differential equations with state-dependent delay in finite dimensional space under the condition that the nonlinear function is Lipschitz continuous.

Key words: state-dependent delay, nonlinear function, solution manifold, Lipschitz continuous, C1-smoothness

中图分类号: 

  • O175.15
[1] BELLMAN R, COOKE K L. Differential difference equations[M]. New York: Academic Press, 1963.
[2] DIEKMANN O. Delay equations: functional, complex and nonlinear analysis[M]. New York: Springer-Verlag, 1995.
[3] HALE J K. Theory of functional differential equations[M]. New York: Springer-Link, 1977.
[4] BARTHA M. On stability properties for neutral differential equations with state-dependent delay[J]. Journal and Dynamics Differential Equations, 1999, 7(2):197-220.
[5] DRIVER R D. A two-body problem of classical electrodynamics: the one-dimensional case[J]. Annals of Physics, 1963, 21(1):122-142.
[6] KRISHNAN H P. Existence of unstable manifolds for a certain class of delay differential equations[J]. Electronic Journal of Differential Equations, 2001, 21(1):1-13.
[7] KRISZTIN T. A local unstable manifold for differential equations with state-dependent delay[J]. Discrete and Continuous Dynamical Systems, 2003, 9(4):993-1028.
[8] KRISZTIN T. C1-smoothness of center manifolds for delay differential equations with state-dependent delay[J]. Proc Amer Math Soc, 2006, 48:213-226.
[9] KRISZTIN T, ARINO O. The two-dimensional attractor of a differential equations with state-dependent delay[J]. Journal and Dynamics Differential Equations, 2001, 13(3):453-522.
[10] LOUIHI M, HBID M L, ARINO O. Semigroup properties and the Crandall Liggett approximation for a class of differential equations with state-dependent delays[J]. J Differential Equations, 2002, 181(1):1-30.
[11] JOHN M P, NUSSBAUM R D, PARASKEVOPOULOS P. Periodic solutions for functional differential equations with multiple state-dependent time lags[J]. Topological Methods in Nonlinear Analysis, 1994, 3(1):101-162.
[12] REZOUNENKO A V. Differential equations with discrete state-dependent delay: uniqueness and well-posedness in the space of continuous functions[J]. Nonlinear Anal, 2009, 70(11):3978-3986.
[13] REZOUNENKO A V. A condition on delay for differential equations with discrete state-dependent delay[J]. J Math Anal Appl, 2012, 385(1):506-516.
[14] WALTHER H O. The solution manifold and C1-smoothness for differential equations with state-dependent delay[J]. J Differential Equations, 2003, 195(1):46-65.
[15] WALTHER H O. Differentiable semiflows for differential equations with state-dependent delays[J]. Univ Iagel Acta Math, 2003, 1269(41):57-66.
[16] WALTHER H O. Smoothness properties of semiflow for differential equations with state-dependent delays[J]. Journal of Mathematical Sciences, 2004, 124(4):5193-5207.
[17] HARTUNG F, KRISZTIN T, WALTHER H O, et al. Functional differential equations with state-dependent delay: theory and application[J]. International Journal of Tourism Research, 2006, 13(2):141-163.
[18] KRISZTIN T, REAOUNENKO A. Parabolic partial differential equations with discrete state-dependent delay: classical solutions and solution manifold[J]. J Differential Equations, 2016, 260(5):4454-4472.
[19] LV Yunfei, YUAN Rong, PEI Yongzhen. Smoothness of semiflows for parabolic partial differential equations with state-dependent delay[J]. J Differential Equations, 2016, 260(7):6201-6231.
[20] LV Yunfei, PEI Yongzhen, YUAN Rong. Principle of linearized stability and instability for parabolic differential equations with state-dependent delay[J]. J Differential Equations, 2019, 267(3):1671-1704.
[21] PAZY A. Semigroups of linear operators and applications to partial differential equations[M]. New York: Springer-Verlag, 1983.
[1] 陈雨佳, 杨和. 一类三阶时滞微分方程在Banach空间中的周期解的存在性[J]. 山东大学学报(理学版), 2018, 53(8): 84-94.
[2] . 无穷区间上具有pLaplacian算子的SturmLiouville型边值问题的迭代正解[J]. J4, 2009, 44(5): 86-90.
[3] 刘新民,崔玉军* . Banach空间非柱形域上微分系统解的存在性[J]. J4, 2008, 43(4): 1-05 .
[4] 张晓燕,孙经先 . Banach空间半线性发展方程的最小最大mild解[J]. J4, 2007, 42(10): 18-21 .
[5] 张兴秋,仲秋艳 . Banach空间奇异m点边值问题的正解[J]. J4, 2008, 43(9): 51-56 .
[6] 田家财,高 丽 . 一类二阶微分方程多重解的存在性[J]. J4, 2007, 42(6): 55-60 .
[7] 陈鹏玉,马维凤,Ahmed Abdelmonem. 一类分数阶随机发展方程非局部问题mild解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 13-23.
[8] 章欢,李永祥. 含时滞导数项的高阶常微分方程的正周期解[J]. 《山东大学学报(理学版)》, 2019, 54(4): 29-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!