您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (10): 13-23.doi: 10.6040/j.issn.1671-9352.0.2019.140

• • 上一篇    

一类分数阶随机发展方程非局部问题mild解的存在性

陈鹏玉,马维凤,Ahmed Abdelmonem   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 发布日期:2019-10-12
  • 作者简介:陈鹏玉(1986— ),男,博士,副教授,硕士生导师,研究方向为非线性分析与随机微分方程. E-mail:chpengyu123@163.com
  • 基金资助:
    国家自然科学基金资助项目(11501455,11661071);西北师范大学研究生培养与课程改革资助项目(2018KGLX01014)及“学生创新先锋实验班”资助项目

Existence of mild solutions for a class of fractional stochastic evolution equations with nonlocal initial conditions

CHEN Peng-yu, MA Wei-feng, Ahmed Abdelmonem   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2019-10-12

摘要: 在非局部函数依赖于未知变量在整个定义区间上的值的情形下,应用随机分析理论、Schauder不动点定理及近似方法,假设非线性函数和非局部项是Carathéodory连续的并且满足较弱增长条件,获得了一类分数阶随机发展方程非局部问题mild解的存在性结果。此工作可以看作是对具有一般非局部初始条件的分数阶发展方程建立解的存在性理论的一种尝试。最后举例说明所得抽象结果在具有非局部积分条件的分数阶随机偏微分方程中的应用。

关键词: 分数阶随机发展方程, 非局部条件, 近似方法, 紧半群, Wiener过程

Abstract: This paper obtains the existence results of mild solutions to a class of fractional stochastic evolution equations with nonlocal conditions by applying stochastic analysis theory, Schauder fixed point theorem and approximation method assumes that the nonlinear term is Carethéodory continuous and satisfies some weak growth condition, the nonlocal term depends on all the value of independent variable on the whole interval and satisfies some weak growth condition. This work may be viewed as an attempt to develop a general existence theory for fractional stochastic evolution equations with general nonlocal conditions. Finally, as a sample of application, the results are applied to a fractional stochastic partial differential equation with nonlocal integral condition.

Key words: fractional stochastic evolution equations, nonlocal condition, approximation method, compact semigroup, wiener process

中图分类号: 

  • O175.15
[1] SOBCZYK K. Stochastic differential equations with applications to physics and engineering[M]. London: Kluwer Academic Publishers, 1991.
[2] DA PRATO G, ZABCZYK J. Stochastic equations in infinite dimensions[M]. Cambridge: Cambridge University Press, 1992.
[3] GRECKSCH W, TUDOR C. Stochastic evolution equations: a Hilbert space approach[M]. Berlin: Akademic Verlag, 1995.
[4] MAO Xuerong. Stochastic differential equations and their applications[M]. Chichester, UK: Horwood Publishing Ltd, 1997.
[5] LIU Kai. Stability of infinite dimensional stochastic differential equations with applications[M]. London: Chapman and Hall, 2006.
[6] CURTAIN R F, FALB P L. Stochastic differential equations in Hilbert space[J]. J Differential Equations, 1971, 10(3):412-430.
[7] TANIGUCHI T, LIU Kai, TRUMAN A. Existence,uniqueness and asymptotic behavior of mild solutions to stochastic functional differential equations in Hilbert spaces[J]. J Differential Equations, 2002,181(1):72-91.
[8] LUO Jiaowan. Fixed points and exponential stability of mild solutions of stochastic partial differential equations with delays[J]. J Math Anal Appl, 2008, 342(2):753-760.
[9] LUO Jiaowan, TANIGUCHI T. Fixed point and stability of stochastic neutral partial differential equations with infinite delays[J]. Stoch Anal Appl, 2009, 27(6):1163-1173.
[10] BAO Jianhai, HOU Zhenting, YUAN Chenggui. Stability in distribution of mild solutions to stochastic partial differential equations[J]. Proc Amer Math Soc, 2010, 138(6):2169-2180.
[11] BAO Jianhai, HOU Zhenting. Existence of mild solutions to stochastic neutral partial functional differential equations with non-Lipschitz coefficients[J]. Comput Math Appl, 2010, 59(1):207-214.
[12] SAKTHIVEL R, REN Yong. Exponential stability of second-order stochastic evolution equations with Poisson jumps[J]. Commu Nonl Sci Nume Simu, 2012, 17(12):4517-4523.
[13] SAKTHIVEL R,LUO Jiaowan. Asymptotic stability of impulsive stochastic partial differential equations with infinite delays[J]. J Math Anal Appl, 2009, 356(1):1-6.
[14] REN Yong, SAKTHIVEL R. Existence, uniqueness, and stability of mild solutions for second-order neutral stochastic evolution equations with infinite delay and Poisson jumps[J]. J Math Phys, 2012, 53(7):1-14.
[15] YAN Zuomao, YAN Xingxue. Existence of solutions for impulsive partial stochastic neutral integrodifferential equations with state-dependent delay[J]. Collec Math, 2013, 64(2):235-250.
[16] YAN Zuomao, YAN Xingxue. Existence of solutions for a impulsive nonlocal stochastic functional integrodifferential inclusion in Hilbert spaces[J]. Z Angew Math Phys, 2013, 64(3):573-590.
[17] REN Yong, ZHOU Q, CHEN L. Existence, uniqueness and stability of mild solutions for time-dependent stochastic evolution equations with poisson jumps and infinite delay[J]. J Optim Theory Appl, 2011, 149(2):315-331.
[18] CUI Jing, YAN Litai, WU Xiaotai. Nonlocal Cauchy problem for some stochastic integro-differential equations in Hilbert spaces[J]. J Korean Stat Soci, 2012, 41(3):279-290.
[19] KILBAS A A. Theory and applications of fractional differential equations[M]. Amsterdam: Elsevier Science, 2006.
[20] El-BORAI M M, El-NADI K E, El-AKABAWY E G. On some fractional evolution equations[J]. Comput Math Appl, 2010, 59(3):1352-1355.
[21] WANG Jinrong, ZHOU Yong. A class of fractional evolution equations and optimal controls[J]. Nonlinear Anal: Real Word Appl, 2011, 12(1):262-272.
[22] CHEN Pengyu, ZHANG Xuping, LI Yongxiang. Study on fractional non-autonomous evolution equations with delay[J]. Comput Math Appl, 2017, 73(5):794-803.
[23] ZHU Bo, LIU Lishan, WU Yonghong. Local and global existence of mild solutions for a class of semilinear fractional integro-differential equations[J]. Fract Calc Appl Anal, 2017, 20(6):1338-1355.
[24] ZHU Bo, LIU Lishan, WU Yonghong. Local and global existence of mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay[J]. Appl Math Lett, 2016, 61:73-79.
[25] El-BORAI M M On some stochastic fractional integro-differential equations[J]. Advan Dynam Syst Appl, 2006, 1(1):49-57.
[26] CUI Jing, YAN Litan. Existence result for fractional neutral stochastic integro-differential equations with infinite delay[J]. J Phys A: Math Theor, 2011, 44:335201.
[27] SAKTHIVEL R, REVATHI P, REN Yong. Existence of solutions for nonlinear fractional stochastic differential equations[J]. Nonlinear Anal, 2013, 81:70-86.
[28] SAKTHIVEL R, SUGANYAB S, ANTHONIB S M. Approximate controllability of fractional stochastic evolution equations[J]. Comput Math Appl, 2012, 63(3):660-668.
[29] LI Kexue, PENG Jigen. Controllability of fractional neutral stochastic functional differential systems[J]. Z Angew Math Phys, 2014, 65(5):941-959.
[30] BYSZEWSKI L. Theorems about the existence and uniquenessof solutions of a semilinear evolution nonlocal Cauchy problem[J]. J Math Anal Appl, 1991, 162:494-505.
[31] DENG K. Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions[J]. J Math Anal Appl, 1993, 179(2):630-637.
[32] BYSZEWSKI L. Existence and uniqueness of a classical solutions to a functional-differential abstract nonlocal Cauchy problem[J]. J Math Appl Stoch Anal, 1999, 12:91-97.
[33] CHEN Pengyu, ZHANG Xuping. A blowup alternative result for fractional non-autonomous evolution equation of Volterra type[J]. Commun Pure Appl Anal, 2018, 17(5):1975-1992.
[34] CHEN Pengyu, ZHANG Xuping, LI Yongxiang. Approximation technique for fractional evolution equations with nonlocal integral conditions[J]. Mediterr J Math, 2017, 14(226):1-16.
[35] ZHOU Yong, VIJAYAKUMAR V, MURUGESU R. Controllability for fractional evolution inclusions without compactness[J]. Evol Equ Control Theory, 2015, 4:507-524.
[36] WANG Rongnian, XIAO Tijun, LIANG Jin. A note on the fractional Cauchy problems with nonlocal conditions[J]. Appl Math Lette, 2011, 24(8):1435-1442.
[37] WANG J, FECKAN M, ZHOU Yong. Approximate controllability of Sobolev type fractional evolution systems with nonlocal conditions[J]. Evol Equ Control Theory, 2017, 6(3):471-486.
[38] ZHANG Xuping, CHEN Pengyu, ABDELMONEM A, et al. Fractional stochastic evolution equations with nonlocal initial conditions and noncompact semigroups[J]. Stochastics, 2018, 90(7): 1005-1022.
[39] CHEN Pengyu, ZHANG Xuping, LI Yongxiang. Nonlocal problem for fractional stochastic evolution equations with solution operators[J]. Fract Calcu Appl Anal, 2016, 19(6):1507-1526.
[40] CHEN Pengyu, LI Yongxiang. Nonlocal Cauchy problem for fractional stochastic evolution equations in Hilbert spaces[J]. Collect Math, 2015, 66:63-76.
[41] PAZY A. Semigroups of linear operators and applications to partial differential equations[M]. Berlin: Springer-Verlag, 1983.
[1] 崔静,梁秋菊. 分数布朗运动驱动的非局部随机积分微分系统的存在性与可控性[J]. 山东大学学报(理学版), 2017, 52(12): 81-88.
[2] 杨和. α-范数下非局部脉冲发展方程 mild 解的存在性[J]. J4, 2011, 46(11): 70-74.
[3] 于文广1 ,于红彬2 . 带扩散扰动项的保费随机收取的再保险与最终破产概率[J]. J4, 2009, 44(4): 84-87 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!