您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (6): 57-67.doi: 10.6040/j.issn.1671-9352.0.2022.595

•   • 上一篇    下一篇

二阶脉冲发展方程非局部问题mild解的存在性

李莉(),杨和*()   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 收稿日期:2022-11-14 出版日期:2023-06-20 发布日期:2023-05-23
  • 通讯作者: 杨和 E-mail:2430353979@qq.com;yanghe@nwnu.edu.cn
  • 作者简介:李莉(1995—), 女, 硕士研究生, 研究方向为非线性泛函分析. E-mail: 2430353979@qq.com
  • 基金资助:
    国家自然科学基金委地区科学基金资助项目(12061062)

Existence of mild solutions for the nonlocal problem of second-order impulsive evolution equations

Li LI(),He YANG*()   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2022-11-14 Online:2023-06-20 Published:2023-05-23
  • Contact: He YANG E-mail:2430353979@qq.com;yanghe@nwnu.edu.cn

摘要:

首先通过引入一个Green函数, 给出了含非局部条件$ u(0)=\sum\limits_{k=1}^n C_k u\left(\tau_k\right)$的二阶非线性脉冲发展方程mild解的新定义。其次运用Sadovskii不动点定理证明了该mild解的存在性。最后, 给出了一个具体例子作为抽象结果的应用。

关键词: 二阶脉冲发展方程, 余弦族, 非局部条件, Sadovskii不动点定理, mild解

Abstract:

A new definition of mild solutions of the second-order impulsive evolution equations involving nonlocal condition $ u(0)=\sum\limits_{k=1}^n C_k u\left(\tau_k\right)$ is given by introducing a Green function. Then, the existence of mild solutions of the concerned problem is proved by applying the Sadovskii fixed point theorem. At last, an example is provided as an application of the obtained abstract result.

Key words: second-order impulsive evolution equation, cosine family, nonlocal condition, Sadovskii fixed point theorem, mild solution

中图分类号: 

  • O175.15
1 LAKSHMIKANTHAM V , BAINOV D D , SIMEONOV P S . Theory of impulsive differential equations[M]. Singapore: World Scientific, 1989.
2 SAMOILENKO A M , PERESTYUK N A . Impulsive differential equations[M]. Singapore: World Scientific, 1995.
3 BALL J . Initial boundary value problems for an extensible beam[J]. Math Anal Appl, 1973, 42, 61- 90.
doi: 10.1016/0022-247X(73)90121-2
4 FITZGIBBON W E . Global existence and boundedness of solutions to the extensiblebeam equation[J]. Math Anal, 1982, 13, 739- 745.
5 FATTORINI H O . Second order linear differential equations in Banach spaces[M]. NorthHolland: Elsevier Science, 1985: 24- 38.
6 TRAVIS C C , WEBB G F . Compactness, regularity, and uniform continuity properties of strongly continuous cosine families[J]. Houston J Math, 1977, 3 (4): 555- 567.
7 TRAVIS C C , WEBB G F . Cosine families and abstract nonlinear second order differential equation[J]. Acta Math Acad Sci Hungar, 1978, 32 (3/4): 75- 96.
8 BALACHANDRAN K , PARK D G , ANTHONI S M . Existence of solutions of abstract-nonlinear second-order neutral functional integrodifferential equations[J]. Comput Math Appl, 2003, 46 (8/9): 1313- 1324.
9 HERNANDEZ E . Some comments on: existence of solutions of abstract nonlinear second-order neutral functional integrodifferential equations[J]. Comput Math Appl, 2005, 50 (5/6): 655- 669.
10 AKHMEROV R R . Measures of noncompactness and condensing operators[M]. Boston: Birkhauser, 1992.
11 ALVAREZ J C . Measure of noncompactness and fixed points of nonexpansive condensing mappings in locally convex spaces[J]. Rev Real Acad Cienc Exact Fis Natur Madrid, 1985, 79 (1/2): 53- 66.
12 DENG K . Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions[J]. J Math Anal Appl, 1993, 179 (2): 630- 637.
doi: 10.1006/jmaa.1993.1373
13 AKCA H , COVACHEV V , COVACHEVA Z . Existence theorem for a second-order impulsive functional differential equation with a nonlocal condition[J]. J Nonlinear Convex Anal, 2016, 17 (6): 1129- 1136.
14 HENRIQUEZ H R , HERNANDEZ E . Existence of solutions of a second order abstract functional Cauchy problem with nonlocal conditions[J]. Ann Polon Math, 2006, 88 (2): 141- 159.
doi: 10.4064/ap88-2-5
15 CHEN Pengyu , ZHANG Xuping , LI Yongxiang . Approximate controllability of non-autonomous evolution system with nonlocal conditions[J]. J Dyn Control Syst, 2020, 26 (1): 1- 16.
doi: 10.1007/s10883-018-9423-x
16 KAMENSKII M , OBUKHOVSKII V , ZECCA P . Condensing multivalued maps and semilinear differential inclusions in banach spaces[M]. New York: W. de Gruyter, 2001.
17 HEINZ H R . On the behavior of measure of noncompactness with respect to differentiation and integration of vector-valued functions[J]. Nonlinear Anal, 1983, 7 (12): 1351- 1371.
doi: 10.1016/0362-546X(83)90006-8
18 郭大钧. 非线性分析中的半序方法[M]. 济南: 山东科学技术出版社, 2005.
GUO Dajun . Semiorder methods in nonlinear analysis[M]. Jinan: Shandong Science and Technology Press, 2005.
19 SADOVSKII B N . On a fixed point principle[J]. Funct Anal Appl, 1967, 1 (2): 74- 76.
[1] 孙盼,张旭萍. 具有无穷时滞脉冲发展方程解的连续依赖性[J]. 《山东大学学报(理学版)》, 2023, 58(6): 77-83.
[2] 原田娇,李强. 一类脉冲发展方程IS-渐近周期mild解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(6): 10-21.
[3] 陈鹏玉,马维凤,Ahmed Abdelmonem. 一类分数阶随机发展方程非局部问题mild解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 13-23.
[4] 崔静,梁秋菊. 分数布朗运动驱动的非局部随机积分微分系统的存在性与可控性[J]. 山东大学学报(理学版), 2017, 52(12): 81-88.
[5] 杨和. α-范数下非局部脉冲发展方程 mild 解的存在性[J]. J4, 2011, 46(11): 70-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 唐风琴1,白建明2. 一类带有广义负上限相依索赔额的风险过程大偏差[J]. J4, 2013, 48(1): 100 -106 .
[2] 程智1,2,孙翠芳2,王宁1,杜先能1. 关于Zn的拉回及其性质[J]. J4, 2013, 48(2): 15 -19 .
[3] 汤晓宏1,胡文效2*,魏彦锋2,蒋锡龙2,张晶莹2,. 葡萄酒野生酿酒酵母的筛选及其生物特性的研究[J]. 山东大学学报(理学版), 2014, 49(03): 12 -17 .
[4] 罗斯特,卢丽倩,崔若飞,周伟伟,李增勇*. Monte-Carlo仿真酒精特征波长光子在皮肤中的传输规律及光纤探头设计[J]. J4, 2013, 48(1): 46 -50 .
[5] 田学刚, 王少英. 算子方程AXB=C的解[J]. J4, 2010, 45(6): 74 -80 .
[6] 霍玉洪,季全宝. 一类生物细胞系统钙离子振荡行为的同步研究[J]. J4, 2010, 45(6): 105 -110 .
[7] 杨军. 金属基纳米材料表征和纳米结构调控[J]. 山东大学学报(理学版), 2013, 48(1): 1 -22 .
[8] 董伟伟. 一种具有独立子系统的决策单元DEA排序新方法[J]. J4, 2013, 48(1): 89 -92 .
[9] 张京友,张培爱,钟海萍. 进化图论在知识型企业组织结构设计中的应用[J]. J4, 2013, 48(1): 107 -110 .
[10] 杨伦,徐正刚,王慧*,陈其美,陈伟,胡艳霞,石元,祝洪磊,曾勇庆*. RNA干扰沉默PID1基因在C2C12细胞中表达的研究[J]. J4, 2013, 48(1): 36 -42 .