《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (6): 57-67.doi: 10.6040/j.issn.1671-9352.0.2022.595
摘要:
首先通过引入一个Green函数, 给出了含非局部条件
中图分类号:
1 | LAKSHMIKANTHAM V , BAINOV D D , SIMEONOV P S . Theory of impulsive differential equations[M]. Singapore: World Scientific, 1989. |
2 | SAMOILENKO A M , PERESTYUK N A . Impulsive differential equations[M]. Singapore: World Scientific, 1995. |
3 |
BALL J . Initial boundary value problems for an extensible beam[J]. Math Anal Appl, 1973, 42, 61- 90.
doi: 10.1016/0022-247X(73)90121-2 |
4 | FITZGIBBON W E . Global existence and boundedness of solutions to the extensiblebeam equation[J]. Math Anal, 1982, 13, 739- 745. |
5 | FATTORINI H O . Second order linear differential equations in Banach spaces[M]. NorthHolland: Elsevier Science, 1985: 24- 38. |
6 | TRAVIS C C , WEBB G F . Compactness, regularity, and uniform continuity properties of strongly continuous cosine families[J]. Houston J Math, 1977, 3 (4): 555- 567. |
7 | TRAVIS C C , WEBB G F . Cosine families and abstract nonlinear second order differential equation[J]. Acta Math Acad Sci Hungar, 1978, 32 (3/4): 75- 96. |
8 | BALACHANDRAN K , PARK D G , ANTHONI S M . Existence of solutions of abstract-nonlinear second-order neutral functional integrodifferential equations[J]. Comput Math Appl, 2003, 46 (8/9): 1313- 1324. |
9 | HERNANDEZ E . Some comments on: existence of solutions of abstract nonlinear second-order neutral functional integrodifferential equations[J]. Comput Math Appl, 2005, 50 (5/6): 655- 669. |
10 | AKHMEROV R R . Measures of noncompactness and condensing operators[M]. Boston: Birkhauser, 1992. |
11 | ALVAREZ J C . Measure of noncompactness and fixed points of nonexpansive condensing mappings in locally convex spaces[J]. Rev Real Acad Cienc Exact Fis Natur Madrid, 1985, 79 (1/2): 53- 66. |
12 |
DENG K . Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions[J]. J Math Anal Appl, 1993, 179 (2): 630- 637.
doi: 10.1006/jmaa.1993.1373 |
13 | AKCA H , COVACHEV V , COVACHEVA Z . Existence theorem for a second-order impulsive functional differential equation with a nonlocal condition[J]. J Nonlinear Convex Anal, 2016, 17 (6): 1129- 1136. |
14 |
HENRIQUEZ H R , HERNANDEZ E . Existence of solutions of a second order abstract functional Cauchy problem with nonlocal conditions[J]. Ann Polon Math, 2006, 88 (2): 141- 159.
doi: 10.4064/ap88-2-5 |
15 |
CHEN Pengyu , ZHANG Xuping , LI Yongxiang . Approximate controllability of non-autonomous evolution system with nonlocal conditions[J]. J Dyn Control Syst, 2020, 26 (1): 1- 16.
doi: 10.1007/s10883-018-9423-x |
16 | KAMENSKII M , OBUKHOVSKII V , ZECCA P . Condensing multivalued maps and semilinear differential inclusions in banach spaces[M]. New York: W. de Gruyter, 2001. |
17 |
HEINZ H R . On the behavior of measure of noncompactness with respect to differentiation and integration of vector-valued functions[J]. Nonlinear Anal, 1983, 7 (12): 1351- 1371.
doi: 10.1016/0362-546X(83)90006-8 |
18 | 郭大钧. 非线性分析中的半序方法[M]. 济南: 山东科学技术出版社, 2005. |
GUO Dajun . Semiorder methods in nonlinear analysis[M]. Jinan: Shandong Science and Technology Press, 2005. | |
19 | SADOVSKII B N . On a fixed point principle[J]. Funct Anal Appl, 1967, 1 (2): 74- 76. |
[1] | 孙盼,张旭萍. 具有无穷时滞脉冲发展方程解的连续依赖性[J]. 《山东大学学报(理学版)》, 2023, 58(6): 77-83. |
[2] | 原田娇,李强. 一类脉冲发展方程IS-渐近周期mild解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(6): 10-21. |
[3] | 陈鹏玉,马维凤,Ahmed Abdelmonem. 一类分数阶随机发展方程非局部问题mild解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 13-23. |
[4] | 崔静,梁秋菊. 分数布朗运动驱动的非局部随机积分微分系统的存在性与可控性[J]. 山东大学学报(理学版), 2017, 52(12): 81-88. |
[5] | 杨和. α-范数下非局部脉冲发展方程 mild 解的存在性[J]. J4, 2011, 46(11): 70-74. |
|