《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (6): 77-83, 91.doi: 10.6040/j.issn.1671-9352.0.2022.469
摘要:
通过综合运用算子半群理论和非线性分析的工具与方法, 研究具有无穷时滞的脉冲发展方程初值问题mild解的存在性及其对初值的连续依赖性。
中图分类号:
1 |
CHANG J C . Existence and compactness of solutions to impulsive differential equations with nonlocal conditions[J]. Mathematical Methods in the Applied Sciences, 2016, 39 (2): 317- 327.
doi: 10.1002/mma.3479 |
2 | FU X L , CAO Y J . Existence for neutral impulsive differential inclusions with nonlocal conditions[J]. Nonlinear Analysis: Theory, Methods & Applications, 2008, 68 (12): 3707- 3718. |
3 |
FU X L , ZHOU L . Stability for impulsive functional differential equations with infinite delays[J]. Acta Math Sin, 2010, 26 (5): 909- 922.
doi: 10.1007/s10114-009-7071-5 |
4 | JI S C , LI G . Existence results for impulsive differential inclusions with nonlocal conditions[J]. Comput Math Appl, 2011, 62 (4): 1908- 1915. |
5 | SAMOILENKO A M , PERESTYUK N A . Impulsive differential equations[M]. Singapore: World Scientific, 1995. |
6 |
ABADA N , BENCHOHRA M , HAMMOUCHE H . Existence results for semi-linear differential evolution equations with impulses and delay[J]. Cubo (Temuco), 2010, 12 (2): 1- 17.
doi: 10.4067/S0719-06462010000200001 |
7 |
BALACHANDRAN K , ANNAPOORANI N . Existence results for impulsive neutral evolution integro-differential equations with infinite delay[J]. Nonlinear Analysis: Hybrid Systems, 2009, 3 (4): 674- 684.
doi: 10.1016/j.nahs.2009.06.004 |
8 |
CHANG Y K , ANGURAJ A , ARJUNAN M M . Existence results for impulsive neutral functional differential equations with infinite delay[J]. Nonlinear Analysis: Hybrid Systems, 2008, 2 (1): 209- 218.
doi: 10.1016/j.nahs.2007.10.001 |
9 |
DONG Q X , LI G . Existence of solutions for nonlinear evolution equations with infinite delay[J]. Bull Korean Math Soc, 2014, 51 (1): 43- 54.
doi: 10.4134/BKMS.2014.51.1.043 |
10 | HAO X N , LIU L S . Mild solution of semi-linear impulsive integro-differential evolution equation in Banach spaces[J]. Math Methods Appl, 2017, 40 (13): 4832- 4841. |
11 | 刘洋, 范虹霞. 一类具有无穷时滞的抽象脉冲发展方程mild解的存在性[J]. 安徽师范大学学报(自然科学版), 2020, 43 (1): 11- 18. |
LIU Yang , FAN Hongxia . Existence of mild solution for a class of abstract impulsive evolution equations with infinite delays[J]. Journal of Anhui Normal University (Natural Science), 2020, 43 (1): 11- 18. | |
12 |
WANG J R . Stability of noninstantaneous impulsive evolution equations[J]. Applied Mathematics Letters, 2017, 73, 157- 162.
doi: 10.1016/j.aml.2017.04.010 |
13 |
ZHANG X P , CHEN P Y , O'REGAN D . Continuous dependence of fuzzy mild solutions on parameters for IVP of fractional fuzzy evolution equations[J]. Fractional Calculus and Applied Analysis, 2021, 24 (6): 1758- 1776.
doi: 10.1515/fca-2021-0076 |
14 |
ZHU J B , FU X L . Existence and asymptotic periodicity of solutions for neutral integro-differential evolution equations with infinite delay[J]. Mathematica Slovaca, 2022, 72 (1): 121- 140.
doi: 10.1515/ms-2022-0009 |
15 |
ZHANG X P , LI Y X . Existence of solutions for delay evolution equations with nonlocal conditions[J]. Open Mathematics, 2017, 15 (1): 616- 627.
doi: 10.1515/math-2017-0055 |
16 | CHANG Y K . Controllability of impulsive functional differential systems with infinite delay in Banach spaces[J]. Chaos, Solitions & Fractals, 2007, 33 (5): 1601- 1609. |
17 |
YAN B Q . Boundary value problems on the half-line with impulses and infinite delay[J]. Journal of Mathematical Analysis and Applications, 2001, 259 (1): 94- 114.
doi: 10.1006/jmaa.2000.7392 |
18 | 尤秉礼. 常微分方程补充教程[M]. 北京: 人民教育出版社, 1982. |
YOU B L . Ordinary differential equation complementary curriculum[M]. Beijing: People Education Press, 1982. |
[1] | 李莉,杨和. 二阶脉冲发展方程非局部问题mild解的存在性[J]. 《山东大学学报(理学版)》, 2023, 58(6): 57-67. |
[2] | 陈鹏玉,马维凤,Ahmed Abdelmonem. 一类分数阶随机发展方程非局部问题mild解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 13-23. |
[3] | 杨和. α-范数下非局部脉冲发展方程 mild 解的存在性[J]. J4, 2011, 46(11): 70-74. |
|