您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (6): 77-83, 91.doi: 10.6040/j.issn.1671-9352.0.2022.469

•   • 上一篇    下一篇

具有无穷时滞脉冲发展方程解的连续依赖性

孙盼(),张旭萍*()   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 收稿日期:2022-09-01 出版日期:2023-06-20 发布日期:2023-05-23
  • 通讯作者: 张旭萍 E-mail:psun0831@163.com;lanyu9986@126.com
  • 作者简介:孙盼(1996—), 女, 硕士研究生, 研究方向为非线性泛函分析. E-mail: psun0831@163.com
  • 基金资助:
    甘肃省自然科学基金资助项目(20JR5RA522)

Continuous dependence of solution for impulsive evolution equations with infinite delay

Pan SUN(),Xuping ZHANG*()   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2022-09-01 Online:2023-06-20 Published:2023-05-23
  • Contact: Xuping ZHANG E-mail:psun0831@163.com;lanyu9986@126.com

摘要:

通过综合运用算子半群理论和非线性分析的工具与方法, 研究具有无穷时滞的脉冲发展方程初值问题mild解的存在性及其对初值的连续依赖性。

关键词: 无穷时滞, 脉冲发展方程, 紧半群, mild解的连续依赖性

Abstract:

By comprehensive applying the theory of operator semigroups and method of nonlinear analysis, this paper will investigate the existence of mild solutions and the continuous dependence of mild solutions to initial values for the initial problem of impulsive evolution equations with infinite delay.

Key words: infinite delay, impulsive evolution equation, compact semigroup, continuous dependence of mild solution

中图分类号: 

  • O175.15
1 CHANG J C . Existence and compactness of solutions to impulsive differential equations with nonlocal conditions[J]. Mathematical Methods in the Applied Sciences, 2016, 39 (2): 317- 327.
doi: 10.1002/mma.3479
2 FU X L , CAO Y J . Existence for neutral impulsive differential inclusions with nonlocal conditions[J]. Nonlinear Analysis: Theory, Methods & Applications, 2008, 68 (12): 3707- 3718.
3 FU X L , ZHOU L . Stability for impulsive functional differential equations with infinite delays[J]. Acta Math Sin, 2010, 26 (5): 909- 922.
doi: 10.1007/s10114-009-7071-5
4 JI S C , LI G . Existence results for impulsive differential inclusions with nonlocal conditions[J]. Comput Math Appl, 2011, 62 (4): 1908- 1915.
5 SAMOILENKO A M , PERESTYUK N A . Impulsive differential equations[M]. Singapore: World Scientific, 1995.
6 ABADA N , BENCHOHRA M , HAMMOUCHE H . Existence results for semi-linear differential evolution equations with impulses and delay[J]. Cubo (Temuco), 2010, 12 (2): 1- 17.
doi: 10.4067/S0719-06462010000200001
7 BALACHANDRAN K , ANNAPOORANI N . Existence results for impulsive neutral evolution integro-differential equations with infinite delay[J]. Nonlinear Analysis: Hybrid Systems, 2009, 3 (4): 674- 684.
doi: 10.1016/j.nahs.2009.06.004
8 CHANG Y K , ANGURAJ A , ARJUNAN M M . Existence results for impulsive neutral functional differential equations with infinite delay[J]. Nonlinear Analysis: Hybrid Systems, 2008, 2 (1): 209- 218.
doi: 10.1016/j.nahs.2007.10.001
9 DONG Q X , LI G . Existence of solutions for nonlinear evolution equations with infinite delay[J]. Bull Korean Math Soc, 2014, 51 (1): 43- 54.
doi: 10.4134/BKMS.2014.51.1.043
10 HAO X N , LIU L S . Mild solution of semi-linear impulsive integro-differential evolution equation in Banach spaces[J]. Math Methods Appl, 2017, 40 (13): 4832- 4841.
11 刘洋, 范虹霞. 一类具有无穷时滞的抽象脉冲发展方程mild解的存在性[J]. 安徽师范大学学报(自然科学版), 2020, 43 (1): 11- 18.
LIU Yang , FAN Hongxia . Existence of mild solution for a class of abstract impulsive evolution equations with infinite delays[J]. Journal of Anhui Normal University (Natural Science), 2020, 43 (1): 11- 18.
12 WANG J R . Stability of noninstantaneous impulsive evolution equations[J]. Applied Mathematics Letters, 2017, 73, 157- 162.
doi: 10.1016/j.aml.2017.04.010
13 ZHANG X P , CHEN P Y , O'REGAN D . Continuous dependence of fuzzy mild solutions on parameters for IVP of fractional fuzzy evolution equations[J]. Fractional Calculus and Applied Analysis, 2021, 24 (6): 1758- 1776.
doi: 10.1515/fca-2021-0076
14 ZHU J B , FU X L . Existence and asymptotic periodicity of solutions for neutral integro-differential evolution equations with infinite delay[J]. Mathematica Slovaca, 2022, 72 (1): 121- 140.
doi: 10.1515/ms-2022-0009
15 ZHANG X P , LI Y X . Existence of solutions for delay evolution equations with nonlocal conditions[J]. Open Mathematics, 2017, 15 (1): 616- 627.
doi: 10.1515/math-2017-0055
16 CHANG Y K . Controllability of impulsive functional differential systems with infinite delay in Banach spaces[J]. Chaos, Solitions & Fractals, 2007, 33 (5): 1601- 1609.
17 YAN B Q . Boundary value problems on the half-line with impulses and infinite delay[J]. Journal of Mathematical Analysis and Applications, 2001, 259 (1): 94- 114.
doi: 10.1006/jmaa.2000.7392
18 尤秉礼. 常微分方程补充教程[M]. 北京: 人民教育出版社, 1982.
YOU B L . Ordinary differential equation complementary curriculum[M]. Beijing: People Education Press, 1982.
[1] 李莉,杨和. 二阶脉冲发展方程非局部问题mild解的存在性[J]. 《山东大学学报(理学版)》, 2023, 58(6): 57-67.
[2] 陈鹏玉,马维凤,Ahmed Abdelmonem. 一类分数阶随机发展方程非局部问题mild解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 13-23.
[3] 杨和. α-范数下非局部脉冲发展方程 mild 解的存在性[J]. J4, 2011, 46(11): 70-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 廖明哲. 哥德巴赫的两个猜想[J]. J4, 2013, 48(2): 1 -14 .
[2] 赵同欣1,刘林德1*,张莉1,潘成臣2,贾兴军1. 紫藤传粉昆虫与花粉多型性研究[J]. 山东大学学报(理学版), 2014, 49(03): 1 -5 .
[3] 王开荣,高佩婷. 建立在DY法上的两类混合共轭梯度法[J]. 山东大学学报(理学版), 2016, 51(6): 16 -23 .
[4] 赵君1,赵晶2,樊廷俊1*,袁文鹏1,3,张铮1,丛日山1. 水溶性海星皂苷的分离纯化及其抗肿瘤活性研究[J]. J4, 2013, 48(1): 30 -35 .
[5] 杨永伟1,2,贺鹏飞2,李毅君2,3. BL-代数的严格滤子[J]. 山东大学学报(理学版), 2014, 49(03): 63 -67 .
[6] 李敏1,2,李歧强1. 不确定奇异时滞系统的观测器型滑模控制器[J]. 山东大学学报(理学版), 2014, 49(03): 37 -42 .
[7] 杨军. 金属基纳米材料表征和纳米结构调控[J]. 山东大学学报(理学版), 2013, 48(1): 1 -22 .
[8] 董伟伟. 一种具有独立子系统的决策单元DEA排序新方法[J]. J4, 2013, 48(1): 89 -92 .
[9] 张京友,张培爱,钟海萍. 进化图论在知识型企业组织结构设计中的应用[J]. J4, 2013, 48(1): 107 -110 .
[10] 冒爱琴1, 2, 杨明君2, 3, 俞海云2, 张品1, 潘仁明1*. 五氟乙烷灭火剂高温热解机理研究[J]. J4, 2013, 48(1): 51 -55 .