《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (6): 68-76.doi: 10.6040/j.issn.1671-9352.0.2022.433
摘要:
研究二阶周期边值问题
中图分类号:
1 |
ZHANG Zhongxin , WANG Junyu . On existence and multiplicity of positive solutions to periodic boundary value problems for singular nonlinear second order differential equations[J]. Journal of Mathematical Analysis and Applications, 2003, 281 (1): 99- 107.
doi: 10.1016/S0022-247X(02)00538-3 |
2 |
GRAEF J R , KONG L J , WANG H Y . Existence, multiplicity, and dependence on a parameter for a periodic boundary value problem[J]. Journal of Differential Equations, 2008, 245 (5): 1185- 1197.
doi: 10.1016/j.jde.2008.06.012 |
3 | DOSOUDILOVÁ M , LOMTATIDZE A . Remark on periodic boundary-value problem for second-order linear ordinary differential equations[J]. Electronic Journal of Differential Equations, 2018, 13, 1- 7. |
4 |
YAO Qingliu . Triple positive periodic solutions of nonlinear singular second-order boundary value problems[J]. Acta Mathematica Sinica, English Series Volume, 2014, 30 (2): 361- 370.
doi: 10.1007/s10114-013-1291-4 |
5 | LIU Jian , FENG Hanying . Positive solutions of periodic boundary value problems for second-order differential equations with the nonlinearity dependent on the derivative[J]. Journal of Applied Mathematics and Computing Volume, 2015, 49 (1/2): 343- 355. |
6 |
ZHANG Guowei . Nontrivial solutions for a second order periodic boundary value problem with the nonlinearity dependent on the derivative[J]. Applied Mathematics Letters, 2022, 124, 107678.
doi: 10.1016/j.aml.2021.107678 |
7 |
TORRES P J . Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem[J]. Journal of Differential Equations, 2003, 190 (2): 643- 662.
doi: 10.1016/S0022-0396(02)00152-3 |
8 |
LI Fuyi , LIANG Zhanping . Existence of positive periodic solutions to nonlinear second order differential equations[J]. Applied Mathematics Letters, 2005, 18 (11): 1256- 1264.
doi: 10.1016/j.aml.2005.02.014 |
9 | HAI D D . On a superlinear periodic boundary value problem with vanishing Green's function[J]. Electronic Journal of Qualitative Theory of Differential Equation, 2016, 55, 1- 12. |
10 |
GRAEF J R , KONG L J , WANG H Y . A periodic boundary value problem with vanishing Green's function[J]. Applied Mathematics Letters, 2008, 21 (2): 176- 180.
doi: 10.1016/j.aml.2007.02.019 |
11 | LOMTATIDZE A . On periodic boundary value problem for second-order ordinary differential equations[J]. Communications in Contemporary Mathematics, 2020, 22 (6): 1- 33. |
12 |
YAO Qingliu . Positive solutions of nonlinear second-order periodic boundary value problems[J]. Applied Mathematics Letters, 2007, 20 (5): 583- 590.
doi: 10.1016/j.aml.2006.08.003 |
[1] | 李莉,杨和. 二阶脉冲发展方程非局部问题mild解的存在性[J]. 《山东大学学报(理学版)》, 2023, 58(6): 57-67. |
[2] | 石轩荣. 一类二阶半正问题正解的存在性[J]. 《山东大学学报(理学版)》, 2023, 58(4): 89-96. |
[3] | 王国欣,牛玉俊. 随机线性二阶锥互补问题的实值隐拉格朗日法[J]. 《山东大学学报(理学版)》, 2023, 58(4): 49-54. |
[4] | 张行,焦玉娟,杨进苗. 一类扩散的捕食者-食饵模型行波解的存在性[J]. 《山东大学学报(理学版)》, 2023, 58(10): 97-105. |
[5] | 张纪凤,张伟,韦慧,倪晋波. 带p-Laplace算子的分数阶Langevin型方程对偶反周期边值问题解的存在唯一性[J]. 《山东大学学报(理学版)》, 2022, 57(9): 91-100. |
[6] | 邓梓健,刘彬,火博丰. 一类均匀拟阵的二阶圈图连通性及哈密顿性[J]. 《山东大学学报(理学版)》, 2022, 57(5): 92-96. |
[7] | 刘梦雪, 李杰梅, 姚燕燕. 带有非线性边界条件的四阶边值问题的多解性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 84-91. |
[8] | 武若飞. 奇异四阶m-点边值问题解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 75-83. |
[9] | 张瑞燕. 一类非线性三阶三点边值问题正解的存在性、不存在性及多解性[J]. 《山东大学学报(理学版)》, 2021, 56(12): 52-58. |
[10] | 王天祥,李永祥. 一类四阶周期边值问题解的存在性与唯一性[J]. 《山东大学学报(理学版)》, 2020, 55(7): 16-21. |
[11] | 王晶晶,路艳琼. 一类半正非线性弹性梁方程边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 84-92. |
[12] | 安佳辉,陈鹏玉. 变分数阶微分方程初值问题解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 41-47. |
[13] | 李朝倩. 一类非线性四阶边值问题解的存在唯一性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 93-100. |
[14] | 亓婷婷, 张振福, 刘衍胜. 一类具有耦合积分边值条件的分数阶微分系统正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(2): 71-78. |
[15] | 宋君秋,贾梅,刘锡平,李琳. 具p-Laplace算子分数阶非齐次边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 57-66. |
|