《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (12): 52-58.doi: 10.6040/j.issn.1671-9352.0.2021.191
• • 上一篇
张瑞燕
ZHANG Rui-yan
摘要: 考虑一类非线性三阶三点边值问题{u(t)+λf(t,u(t))=0, t∈[0,1],u(0)=u'(0)=0, u'(1)=αu'(η)正解的存在性、不存在性以及多解性,其中λ>0是一个参数,0<η<1, 1<α<1/η, f:[0,1]×[0,∞)→(0,∞)是一个连续函数。主要定理的证明基于不动点指数理论、Leray-Schauder度以及上下解方法。
中图分类号:
[1] MA Ruyun. Multiplicity results for a third order boundary value problem at resonance[J]. Nonlinear Analysis, 1998, 32(4):493-499. [2] YAO Qingliu, FENG Yuqiang. The existence of solution for a third-order two-point boundary value problem[J]. Applied Mathematics Letters, 2002, 15(2):227-232. [3] DOUGLAS A R. Greens function for a third-order generalized right focal problem[J]. Journal of Mathematical Analysis and Applications, 2003, 288(1):1-14. [4] SUN Yongping. Positive solutions of singular third-order three-point boundary value problem[J]. Journal of Mathematical Analysis and Applications, 2005, 306(2):589-603. [5] HOPKINS B, KOSMATOV N. Third-order boundary value problems with sign-changing solutions[J]. Nonlinear Analysis, 2007, 67(1):126-137. [6] PALAMIDES A P, SMYRLIS G. Positive solutions to a singular third-order three-point boundary value problem with an indefinitely signed Greens function[J]. Nonlinear Analysis, 2008, 68(7):2104-2118. [7] CABADA A, LUCIA L S, FELIZ M. Existence, non-existence and multiplicity results for a third order eigenvalue three-point boundary value problem[J]. Journal of Nonlinear Sciences and Applications, 2017, 10(10):5445-5463. [8] GUO Lijun, SUN Jianping, ZHAO Yahong. Existence of positive solution for nonlinear third-order three-point boundary value problem[J]. Nonlinear Analysis, 2008, 68(10):3151-3158. [9] SUN Jianping, REN Qiuyan, ZHAO Yahong. The upper and lower solution method for nonlinear third-order three-point boundary value problem[J]. Electronic Journal of Qualitative Theory of Differential Equtions, 2010, 26(8):1-8. [10] 郭大钧. 非线性泛函分析[M]. 北京:高等教育出版社, 2015. GUO Dajun. Nonlinear functional analysis[M]. Beijing: Higher Education Press, 2015. |
[1] | 赵娇. 一类非线性三阶差分方程正周期解的存在性和多解性[J]. 《山东大学学报(理学版)》, 2021, 56(9): 50-58. |
[2] | 欧阳柏平,肖胜中. 一类具有空变系数的非线性项的半线性双波动方程解的全局非存在性[J]. 《山东大学学报(理学版)》, 2021, 56(9): 59-65. |
[3] | 原田娇,李强. 一类脉冲发展方程IS-渐近周期mild解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(6): 10-21. |
[4] | 侯春娟,李远飞,郭连红. 一类广义不可压Boussinesq方程组解的局部存在性及爆破准则[J]. 《山东大学学报(理学版)》, 2021, 56(2): 97-102. |
[5] | 武若飞. 奇异四阶m-点边值问题解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 75-83. |
[6] | 王天祥,李永祥. 一类四阶周期边值问题解的存在性与唯一性[J]. 《山东大学学报(理学版)》, 2020, 55(7): 16-21. |
[7] | 杨虎军,韩晓玲. 一类非自治四阶常微分方程正周期解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 109-114. |
[8] | 杨丽娟. 一类非线性四阶常微分方程边值问题解的存在唯一性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 101-108. |
[9] | 王晶晶,路艳琼. 二阶微分方程Neumann边值问题最优正解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(3): 113-120. |
[10] | 李海侠. 一类具有密度制约的捕食-食饵扩散模型的定性分析[J]. 《山东大学学报(理学版)》, 2019, 54(9): 54-61. |
[11] | 陈瑞鹏,李小亚. 带阻尼项的二阶奇异微分方程的正周期解[J]. 《山东大学学报(理学版)》, 2019, 54(8): 33-41. |
[12] | 马满堂. 一类非线性二阶系统周期边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(6): 88-95. |
[13] | 章欢,李永祥. 含时滞导数项的高阶常微分方程的正周期解[J]. 《山东大学学报(理学版)》, 2019, 54(4): 29-36. |
[14] | 何燕琴,韩晓玲. 带积分边界条件的四阶边值问题的单调正解[J]. 《山东大学学报(理学版)》, 2019, 54(12): 32-37. |
[15] | 竺晓霖,翟成波. 一类二阶微分方程Sturm-Liouville边值问题正解的局部存在性与唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 91-96. |
|