《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (9): 50-58.doi: 10.6040/j.issn.1671-9352.0.2020.394
• • 上一篇
赵娇
ZHAO Jiao
摘要: 考虑一类非线性三阶差分方程Δ3u(t-3)+αΔ2u(t-2)+βΔu(t-1)=f(t,u(t)), t∈[3,T]Z正周期解的存在性和多解性, 其中 T>4, α>0, -1<β<0, f:[3,T]Z×[0,∞)→R关于 u∈[0,∞)连续, f(t+ω,u)=f(t,u), ω∈Z+。主要结果的证明基于Guo-Krasnoselskii 不动点定理。
中图分类号:
[1] MA Ruyun. Multiplicity results for a third order boundary value problem at resonance[J]. Nonlinear Analysis, 1998, 32(4):493-499. [2] 郝兆才. 半线性三阶差分方程边值问题的非负解[J]. 数学物理学报, 2001, 21(2):225-229. HAO Zhaocai. Nonnegtive solutions for semilinear third-order difference equation boundary value problems[J]. Acta Mathematiea Scientia, 2001, 21(2):225-229. [3] GENG Tianmei, GAO Chenghua. Positive solutions of discrete third-order boundary value problems with sign-changing Greens function[J]. Advances in Difference Equations, 2016, 110(1):1-13. [4] FENG Yuqiang. On the existence and multiplicity of positive periodic solutions of a nonlinear third-order equation[J]. Applied Mathematics Letters, 2009, 22(8):1220-1224. [5] BAI Zhanbing. Existence of solutions for some third-order boundary value problems[J]. Electronic Journal of Differential Equations, 2008, 25(6):359-370. [6] ALBERTO C, FELIZ M. Existence, non-existence and multiplicity results for a third-order eigenvalue three point boundary value problem[J]. Journal of Nonlinear Sciences and Applications, 2017, 2017(10):5445-5463. [7] SUN Yongping. Positive solutions for third-order three-point nonhomogeneous boundary value problems[J]. Applied Mathematics Letters, 2009, 22(1):45-51. [8] ZHANG Rui. Positive solutions of BVPs for third-order discrete nonlinear difference systems[J]. Journal of Applied Mathematics Computing, 2011, 35(1):551-575. [9] AGARWAL R P, HENDERSON J. Positive solutions and nonlinear problems for third order difference equations[J]. Computers Mathematics with Applications, 1998, 36(10):347-355. [10] NEMAT N. Existence of three positive solutions for a system of nonlinear third-order ordinary differential equations[J]. Electronic Journal of Differential Equations, 2011, 2011(144):1-7. |
[1] | 苏肖肖, 张亚莉. 带阻尼项的二阶差分方程周期边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 56-63. |
[2] | 刘梦雪, 李杰梅, 姚燕燕. 带有非线性边界条件的四阶边值问题的多解性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 84-91. |
[3] | 杨虎军,韩晓玲. 一类非自治四阶常微分方程正周期解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 109-114. |
[4] | 孙妍妍,刘衍胜. 抽象空间中Hadamard分数阶微分方程奇异边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(10): 95-103. |
[5] | 陈瑞鹏,李小亚. 带阻尼项的二阶奇异微分方程的正周期解[J]. 《山东大学学报(理学版)》, 2019, 54(8): 33-41. |
[6] | 马满堂. 一类非线性二阶系统周期边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(6): 88-95. |
[7] | 章欢,李永祥. 含时滞导数项的高阶常微分方程的正周期解[J]. 《山东大学学报(理学版)》, 2019, 54(4): 29-36. |
[8] | 亓婷婷, 张振福, 刘衍胜. 一类具有耦合积分边值条件的分数阶微分系统正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(2): 71-78. |
[9] | 苏肖肖. 一类奇异二阶阻尼差分方程周期边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(12): 38-45. |
[10] | 何志乾, 苗亮英. 带弱奇性的二阶阻尼微分方程正周期解的存在性[J]. 山东大学学报(理学版), 2017, 52(10): 84-88. |
[11] | 王双明. 一类具有时滞的周期流行病模型的动力学分析[J]. 山东大学学报(理学版), 2017, 52(1): 81-87. |
[12] | 陈彬. 格林函数变号的三阶周期边值问题[J]. 山东大学学报(理学版), 2016, 51(8): 79-83. |
[13] | 岳园,田双亮,陈秀萍. 部分实现组合电路的等价验证优化算法[J]. 山东大学学报(理学版), 2016, 51(3): 116-121. |
[14] | 郭丽君. 非线性微分方程三阶三点边值问题正解的存在性[J]. 山东大学学报(理学版), 2016, 51(12): 47-53. |
[15] | 徐言超. 连续时间正系统的静态输出反馈鲁棒H∞控制[J]. 山东大学学报(理学版), 2016, 51(12): 87-94. |
|