您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (6): 101-108.doi: 10.6040/j.issn.1671-9352.0.2020.062

• • 上一篇    

一类非线性四阶常微分方程边值问题解的存在唯一性

杨丽娟   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 发布日期:2020-06-01
  • 作者简介:杨丽娟(1997— ), 女, 硕士研究生, 研究方向为常微分方程边值问题. E-mail:18419068954@163.com
  • 基金资助:
    国家自然科学基金资助项目(11671322)

Existence and uniqueness of solutions for a class of boundary value problems of nonlinear fourth-order ordinary differential equations

YANG Li-juan   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2020-06-01

摘要: 研究了非线性四阶常微分方程边值问题{u(4)(t)=f(t,u(t),u'(t),u″(t)), a.e. t∈(0,1),u(0)=u″(0)=u(1)=u″(1)=0,其中非线性项f:[0,1]×R3→R为Carathéodory函数。运用Leray-Schauder原理,在f满足适当的至多线性增长性条件时,获得了该问题解的存在性。进一步,在f满足Lipschitz条件时, 得到了该问题解的存在唯一性。

关键词: Leray-Schauder原理, Wirtinger不等式, 解, 存在性, 唯一性

Abstract: This article considers the existence and uniqueness of solutions of boundary value problems of nonlinear fourth-order ordinary differential equations{u(4)(t)=f(t,u(t),u'(t),u″(t)), a.e. t∈(0,1),u(0)=u″(0)=u(1)=u″(1)=0,where nonlinearity f:[0,1]×R3→R is a Carathéodory function. The existence of solutions is obtained when f satisfies the condition of proper utmost linear growth by using the Leray-Schauder principle. Furthermore, the uniqueness of solutions is proved when f satisfies the Lipschitz condition.

Key words: Leray-Schauder principle, Wirtingers inequality, solution, existence, uniqueness

中图分类号: 

  • O175.8
[1] DANG Q, DANG Q L, QUY N T K. A novel efficient method for nonlinear boundary value problems[J]. Numerical Algorithms, 2017, 76(2):427-439.
[2] LI Yongxiang, GAO Yabing. The method of lower and upper solutions for the cantilever beam equations with fully nonlinear terms[J]. Journal of Inequalities and Applications, 2019, 136(1):1-16.
[3] WEI Yongfang, SONG Qilin, BAI Zhanbing. Existence and iterative method for some fourth order nonlinear boundary value problems[J]. Applied Mathematics Letters, 2019, 87(1):101-107.
[4] MA Ruyun, WANG Jinxiang, LONG Yan. Lower and upper solution method for the problem of elastic beam with hinged ends[J]. Journal of Fixed Point Theory and Applications, 2018, 20(1):1-13.
[5] VRABEL R. On the lower and upper solutions method for the problem of elastic beam with hinged ends[J]. Journal of Mathematical Analysis and Applications, 2015, 421(2):1455-1468.
[6] BAI Zhanbing. Positive solutions of some nonlocal fourth-order boundary value problem[J]. Applied Mathematics and Computation, 2010, 215(12):4191-4197.
[7] MA Ruyun. Existence of positive solutions of a fourth-order boundary value problem[J]. Applied Mathematics and Computation, 2005, 168(2):1219-1231.
[8] YAO Qingliu. Positive solutions for eigenvalue problems of fourth-order elastic beam equations[J]. Applied Mathematics Letters, 2004, 17(2):237-243.
[9] GUPTA C P. Existence and uniqueness theorems for the bending of an elastic beam equation[J]. Applicable Analysis, 1988, 26(4):289-304.
[10] 徐登洲, 马如云. 线性微分方程的非线性扰动[M]. 北京:科学出版社, 2008. XU Dengzhou, MA Ruyun. Nonlinear perturbation of linear differential equations[M]. Beijing: Science Press, 2008.
[11] WANG Junwei, WU Huaining. Some extended Wirtingers inequalities and distributed proportional-spatial integral control of distributed parameter systems with multi-time delays[J]. Journal of the Franklin Institute, 2015, 352(10):4423-4445.
[1] 王晶晶,路艳琼. 一类半正非线性弹性梁方程边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 84-92.
[2] 李朝倩. 一类非线性四阶边值问题解的存在唯一性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 93-100.
[3] 王海权,种鸽子. 两分量Novikov系统初值问题解的局部Gevrey正则性与解析性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 56-63.
[4] 张雅楠,杨雅琦,佟玉霞. 一类A-调和方程障碍问题弱解的局部梯度估计[J]. 《山东大学学报(理学版)》, 2020, 55(6): 76-83.
[5] 王晶晶,路艳琼. 二阶微分方程Neumann边值问题最优正解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(3): 113-120.
[6] 徐秀娟,闫硕,朱叶青. 一类非齐次A-调和方程很弱解的全局正则性[J]. 《山东大学学报(理学版)》, 2020, 55(2): 48-56.
[7] 李效敏,吴聪聪. 亚纯函数与L-函数分担四个有限值的唯一性[J]. 《山东大学学报(理学版)》, 2020, 55(2): 1-8.
[8] 李海侠. 一类具有密度制约的捕食-食饵扩散模型的定性分析[J]. 《山东大学学报(理学版)》, 2019, 54(9): 54-61.
[9] 任建龙. 利用内部温度史重构表面未知热通量[J]. 《山东大学学报(理学版)》, 2019, 54(9): 83-90.
[10] 王海权. 周期情形下两分支 Camassa-Holm 系统解对初值的不一致依赖性[J]. 《山东大学学报(理学版)》, 2019, 54(8): 42-49.
[11] 陈瑞鹏,李小亚. 带阻尼项的二阶奇异微分方程的正周期解[J]. 《山东大学学报(理学版)》, 2019, 54(8): 33-41.
[12] 王培婷,李安然,魏重庆. 下临界Choquard型线性耦合系统基态解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(8): 62-67.
[13] 古勇毅,孔荫莹. 一类辅助微分方程的亚纯解及其应用[J]. 《山东大学学报(理学版)》, 2019, 54(8): 81-89.
[14] 张伟杰,王新利,王汉杰. 亚纯函数微分多项式IM分担值的唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(8): 90-96.
[15] 桑彦彬,陈娟,任艳. 带有Hardy项的奇异p-重调和方程正解的唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(6): 75-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!