您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (6): 76-83.doi: 10.6040/j.issn.1671-9352.0.2019.871

• • 上一篇    

一类A-调和方程障碍问题弱解的局部梯度估计

张雅楠,杨雅琦,佟玉霞*   

  1. 华北理工大学理学院, 河北 唐山 063210
  • 发布日期:2020-06-01
  • 作者简介:张雅楠(1987— ),女,硕士研究生,研究方向为偏微分方程及应用. E-mail:947739624@qq.com *通信作者简介:佟玉霞(1975— ),女,博士,副教授,硕士生导师,研究方向为偏微分方程及应用. E-mail:tongyuxia@126.com

Local gradient estimates for weak solutions of obstacle problems to a class of A-harmonic equations

ZHANG Ya-nan, YANG Ya-qi, TONG Yu-xia*   

  1. College of Science, North China University of Science and Technology, Tangshan 063210, Hebei, China
  • Published:2020-06-01

摘要: 研究一类A-调和方程对应障碍问题弱解的局部梯度估计,首先获得其局部Lp估计,然后再使用新标准化方法和迭代覆盖逼近方法将其推广到Orlicz空间。

关键词: A-调和方程, 障碍问题, 弱解, 梯度估计

Abstract: This paper deals with the local gradient estimates for weak solutions of obstacle problems to a class of A-harmonic equations. Lp-type estimates to weak solutions of obstacle problems are derived. The Lφ-type estimates in Orlicz space are also obtained by a new normalization method and a new iteration-covering approach.

Key words: A-harmonic equation, obstacle problem, weak solution, gradient estimate

中图分类号: 

  • O175.25
[1] CHOE H J. A regularity theory for a general class of quasilinear elliptic partial differential equations and obstacle problems[J]. Archive for Rational Mechanics and Analysis, 1991, 114(4):383-394.
[2] LIANG Shuang, ZHENG Shenzhou. Gradient estimate in Orlicz spaces for elliptic obstacle problems with partially BMO nonlinearities[J]. Electronic Journal of Differential Equations, 2018, 2018(58):1-15.
[3] YAO Fengping. Gradient estimates for weak solutions of A-harmonic equations[J]. Journal of Inequalities and Applications, 2010(1):1-19.
[4] BYUN S S, LEE M. Weighted estimates for nondivergence parabolic equations in Orlicz spaces[J]. Journal of Functional Analysis, 2015, 269(8):2530-2563.
[5] BYUN S S, YAO Fengping, ZHOU Shulin. Gradient estimates in Orlicz space for nonlinear elliptic equations[J]. Journal of Functional Analysis, 2008, 255(8):1851-1873.
[6] GIAQUINTA M. Multiple integrals in the calculus of variations and nonlinear elliptic systems[M]. Princeton: Princeton University Press, 1983.
[7] 高红亚, 贾苗苗. 障碍问题解的局部正则性和局部有界性[J]. 数学物理学报, 2017, 37(4):706-713. GAO Hongya, JIA Miaomiao. Local regularity and local boundedness for solutions to obstacle problems[J]. Acta Mathematica Scientia, 2017, 37(4):706-713.
[8] YAO Fengping, SUN Yu, ZHOU Shulin. Gradient estimates in Orlicz spaces for quasilinear elliptic equation[J]. Nonlinear Analysis, 2008, 69(8):2553-2565.
[9] HEINONEN J, KILPELANEN T, MARTIO O. Nonlinear potential theory of degenerate elliptic equations[M]. New York: Clarendon Press, 1993.
[10] LIEBRMAN G M. The natural generalization of the natural conditions of Ladyzhenskaya and Urall'tseva for elliptic equations[J]. Communications in Partial Differential Equations, 1991, 16(2/3):311-361.
[1] 徐秀娟,闫硕,朱叶青. 一类非齐次A-调和方程很弱解的全局正则性[J]. 《山东大学学报(理学版)》, 2020, 55(2): 48-56.
[2] 杜广伟. 具有次临界增长的椭圆障碍问题解的正则性[J]. 山东大学学报(理学版), 2018, 53(6): 57-63.
[3] 甄苇苇,曾剑,任建龙. 基于变分理论与时间相关的抛物型反源问题[J]. 山东大学学报(理学版), 2018, 53(10): 61-71.
[4] 江静,高庆龄,张克玉. 时标上二阶Dirichlet边值问题弱解的存在性[J]. 山东大学学报(理学版), 2016, 51(6): 99-103.
[5] 李凤萍, 陈光霞. 磁微极流体方程组弱解的正则准则[J]. 山东大学学报(理学版), 2015, 50(05): 60-67.
[6] 边东芬,原保全*. 可压缩磁流体方程组整体弱解的不存在性[J]. J4, 2011, 46(4): 42-48.
[7] 李娟. 一类非齐次障碍问题的很弱解的局部可积性[J]. J4, 2010, 45(8): 66-70.
[8] 许万银. 一类拟线性Neumann问题的多重解[J]. J4, 2009, 44(10): 39-42.
[9] 肖 华 . 多维反射倒向随机微分方程的解对参数的连续依赖性[J]. J4, 2007, 42(2): 68-71 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!