您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (6): 93-100.doi: 10.6040/j.issn.1671-9352.0.2020.003

• • 上一篇    

一类非线性四阶边值问题解的存在唯一性

李朝倩   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 发布日期:2020-06-01
  • 作者简介:李朝倩(1995— ), 女, 硕士研究生, 研究方向为常微分方程边值问题. E-mail:2386616217@qq.com
  • 基金资助:
    国家自然科学基金资助项目(11671322)

Existence and uniqueness of solutions for a class of nonlinear fourth-order boundary value problem

LI Zhao-qian   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2020-06-01

摘要: 考察了一类非线性四阶边值问题{u(4)(t)=f(t,u(t),u'(t),u″(t),u(t)), t∈(0,1),u(0)=u'(0)=u'(1)=u″(1)=0解的存在唯一性,其中f:[0,1]×R4→R为Carathéodory函数。当非线性项f满足至多线性增长条件时,获得了该问题解的存在性。而当f满足Lipschitz型条件时, 进一步得到了该问题解的存在唯一性。主要结果的证明基于Leray-Schauder不动点定理。

关键词: Carathéodory函数, Wirtinger不等式, Leray-Schauder不动点定理, 存在唯一性

Abstract: This paper is devoted to investigate the existence and uniqueness of solutions for a class of nonlinear fourth-order boundary value problem{u(4)(t)=f(t,u(t),u'(t),u″(t),u(t)), t∈(0,1),u(0)=u'(0)=u'(1)=u″(1)=0,where f:[0,1]×R4→R is a Carathéodory function. The existence of the solution is proved in the case f is utmost linear growth. Furthermore the existence and uniqueness of the solution is also obtained when f is Lipschitz type. The proof of the main results is based on Leray-Schauder fixed point theorem.

Key words: Carathéodory function, Wirtinger inequality, Leray-Schauder fixed point theorem, existence and uniqueness

中图分类号: 

  • O175.8
[1] WEI Yongfang, SONG Qilin, BAI Zhanbing. Existence and iterative method for some fourth order nonlinear boundary value problems[J]. Applied Mathematics Letters, 2019, 87:101-107.
[2] GUPTA C P. Existence and uniqueness theorems for the bending of an elastic beam equation[J]. Applicable Analysis, 1988, 26(4):289-304.
[3] LI Yongxiang, GAO Yabing. The method of lower and upper solutions for the cantilever beam equations with fully nonlinear terms[J/OL]. Journal of Inequalities and Applications, 2019 [2019-12-27]. https://doi.org/10.1186/s13660-019-2088-5.
[4] MA Ruyun, WANG Jinxiang, LONG Yan. Lower and upper solution method for the problem of elastic beam with hinged ends[J]. Journal of Fixed Point Theory and Applications, 2018, 20(1):1-13.
[5] VRABEL R. On the lower and upper solutions method for the problem of elastic beam with hinged ends[J]. Journal of Mathematical Analysis and Applications, 2015, 421(2):1455-1468.
[6] BAI Zhanbing. Positive solutions of some nonlocal fourth-order boundary value problem[J]. Applied Mathematics and Computation, 2010, 215(12):4191-4197.
[7] YAO Qingliu. Positive solutions for eigenvalue problems of fourth-order elastic beam equations[J]. Applied Mathematics Letters, 2004, 17(2):237-243.
[8] MA Ruyun. Existence of positive solutions of a fourth-order boundary value problem[J]. Applied Mathematics and Computation, 2005, 168(2):1219-1231.
[9] 徐登洲, 马如云. 线性微分方程的非线性扰动[M]. 北京: 科学出版社, 2008. XU Dengzhou, MA Ruyun. Nonlinear perturbation of linear differential equations[M]. Beijing: Science Press, 2008.
[10] WANG Junwei, WU Huaining. Some extended Wirtingers inequalities and distributed proportional-spatial integral control of distributed parameter systems with multi-time delays[J]. Journal of the Franklin Institute, 2015, 352(10):4423-4445.
[1] 桑彦彬,陈娟,任艳. 带有Hardy项的奇异p-重调和方程正解的唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(6): 75-80.
[2] 王素云,李永军. 带超越共振点非线性项的二阶常微分方程边值问题的可解性[J]. 山东大学学报(理学版), 2018, 53(6): 53-56.
[3] 肖新玲. 由马氏链驱动的正倒向随机微分方程[J]. 山东大学学报(理学版), 2018, 53(4): 46-54.
[4] 王先飞, 江龙, 马娇娇. 具有Osgood型生成元的多维倒向重随机微分方程[J]. 山东大学学报(理学版), 2015, 50(08): 24-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!