《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (8): 81-89.doi: 10.6040/j.issn.1671-9352.0.2018.706
古勇毅,孔荫莹*
GU Yong-yi, KONG Yin-ying*
摘要: 介绍了寻求非线性偏微分方程精确解的方法——复方法,用该方法研究了一类辅助微分方程的亚纯解,并将所得结果运用于寻求相关的非线性偏微分方程的精确解,得到Vakhnenko-Parkes方程和Dodd-Bullough-Mikhailov方程的精确解。
中图分类号:
[1] EREMENKO A. Meromorphic solutions of equations of Briot-Bouquet type[J]. Teorija Funktsii Funktsional Analiz i Prilozhen, 1982, 38:48-56. [2] EREMENKO A, LIAO Liangwen, NG Tuenwai. Meromorphic solutions of higher order Briot-Bouquet differential equations[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 2009, 146(1):197-206. [3] EREMENKO A. Meromorphic traveling wave solutions of the Kuramoto-Sivashinsky equation[J]. Journal of Mathematical Physics Analysis Geometry, 2006, 2(3):278-286. [4] KUDRYASHOV N A. Meromorphic solutions of nonlinear ordinary differential equations[J]. Communications in Nonlinear Sciences and Numerical Simulations, 2010, 15(10):2778-2790. [5] DEMINA M V, KUDRYASHOV N A. From Laurent series to exact meromorphic solutions: the Kawahara equation[J]. Physics Letters A, 2010, 374(39):4023-4029. [6] KUDRYASHOV N A, SINELSHCHIKOV D I, DEMINA M V. Exact solutions of the generalized Bretherton equation[J]. Physics Letters A, 2011, 375(7):1074-1079. [7] YUAN Wenjun, SHANG Yadong, HUANG Yong, et al. The representation of meromorphic solutions to certain ordinary differential equations and its applications[J]. Science China Mathematics, 2013, 43(6):563-575. [8] YUAN Wenjun, LI Yezhou, LIN Jianming. Meromorphic solutions of an auxiliary ordinary differential equation using complex method[J]. Mathematical Methods in the Applied Sciences, 2013, 36(13):1776-1782. [9] YUAN Wenjun, WU Yonghong, CHEN Qiuhui, et al. All meromorphic solutions for two forms of odd order algebraic differential equations and its applications[J]. Applied Mathematics and Computation, 2014, 240:240-251. [10] YUAN Wenjun, XIONG Weiling, LIN Jianming, et al. All meromorphic solutions of an auxiliary ordinary differential equation and its applications[J]. Acta Mathematica Scientia, 2015, 35(5):1241-1250. [11] LANG S. Elliptic functions[M]. New York: Springer, 1987. [12] CONTE R, MUSETTE M. Elliptic general analytic solutions[J]. Studies in Applied Mathematics, 2009, 123(1):63-81. [13] VAKHNENKO V O. Solitons in a nonlinear model medium[J]. Journal of Physics A: General Physics, 1992, 25(15):4181-4187. [14] VAKHNENKO V O, PARKES E J. The two loop soliton solution of the Vakhnenko equation[J]. Nonlinearity, 1998, 11(6):1457-1464. [15] DODD R K, BULLOUGH R K. Polynomial conserved densities for the sine-Gordon equations[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1977, 352(1671):481-503. |
[1] | 张如,韩旭,刘小刚. 非线性延迟微分方程边值方法的收敛性和收缩性[J]. 《山东大学学报(理学版)》, 2019, 54(8): 97-101. |
[2] | 章欢,李永祥. 含时滞导数项的高阶常微分方程的正周期解[J]. 《山东大学学报(理学版)》, 2019, 54(4): 29-36. |
[3] | 陈雨佳, 杨和. 一类三阶时滞微分方程在Banach空间中的周期解的存在性[J]. 山东大学学报(理学版), 2018, 53(8): 84-94. |
[4] | 张石梅,吴秀碧,龙见仁. 复线性微分方程解的增长性的进一步讨论[J]. 山东大学学报(理学版), 2018, 53(6): 23-29. |
[5] | 王素云,李永军. 带超越共振点非线性项的二阶常微分方程边值问题的可解性[J]. 山东大学学报(理学版), 2018, 53(6): 53-56. |
[6] | 肖新玲. 由马氏链驱动的正倒向随机微分方程[J]. 山东大学学报(理学版), 2018, 53(4): 46-54. |
[7] | 陈丽,林玲. 具有时滞效应的股票期权定价[J]. 山东大学学报(理学版), 2018, 53(4): 36-41. |
[8] | 杨叙,李硕. 白噪声和泊松随机测度驱动的倒向重随机微分方程的比较定理[J]. 山东大学学报(理学版), 2017, 52(4): 26-29. |
[9] | 李涛涛. 二阶半正椭圆微分方程径向正解的存在性[J]. 山东大学学报(理学版), 2017, 52(4): 48-55. |
[10] | 张莎,贾梅,李燕,李晓晨. 分数阶脉冲微分方程三点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2017, 52(2): 66-72. |
[11] | 张迪,刘文斌. 带p(t)-Laplacian算子的分数阶微分方程共振无穷多点边值问题解的存在性[J]. 山东大学学报(理学版), 2017, 52(12): 72-80. |
[12] | 冯海星,翟成波. 高阶非线性分数阶微分方程系统的多个正解[J]. 山东大学学报(理学版), 2017, 52(12): 48-57. |
[13] | 崔静,梁秋菊. 分数布朗运动驱动的非局部随机积分微分系统的存在性与可控性[J]. 山东大学学报(理学版), 2017, 52(12): 81-88. |
[14] | 张琬迪,宋晓秋,吴尚伟. 一类模糊积分微分方程的模糊微分变换法[J]. 山东大学学报(理学版), 2017, 52(10): 42-49. |
[15] | 苏小凤,贾梅,李萌萌. 共振条件下分数阶微分方程积分边值问题解的存在性[J]. 山东大学学报(理学版), 2016, 51(8): 66-73. |
|