您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (6): 41-47.doi: 10.6040/j.issn.1671-9352.0.2019.757

• • 上一篇    

变分数阶微分方程初值问题解的存在性

安佳辉,陈鹏玉*   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 发布日期:2020-06-01
  • 作者简介:安佳辉(1994— ),男,硕士研究生,研究方向为非线性泛函分析及其应用. E-mail:2292789562@qq.com*通信作者简介:陈鹏玉(1986— ),男,博士,副教授,硕士生导师,研究方向为非线性泛函分析及其应用. E-mail:chpengyu123@163.com
  • 基金资助:
    国家自然科学基金资助项目(11501455,11661071);西北师范大学青年教师科研能力提升计划资助项目(NWNU-LKQN2019-3)

Existence of solutions to initial value problems of fractional differential equations of variable-order

AN Jia-hui, CHEN Peng-yu*   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2020-06-01

摘要: 运用Schauder不动点定理,研究了变分数阶微分方程的初值问题{Dq(t)0+x(t)=f(t,x), 0Dq(t)0+是关于变阶q(t)的Riemann-Liouvile分数阶导数。

关键词: 变阶的导数与积分, 初值问题, Schauder不动点定理, 全连续算子

Abstract: By using Schauder fixed point theorem, this paper obtains the existence of solution for the following initial value problem of fractional differential equations of variable-order{Dq(t)0+ x(t)=f(t,x), 00)=0,where 01, 0, Dq(t)0+ is the fractional derivative of Riemann-Liouvile of variable-order q(t).

Key words: derivative and integral of variable order, initial value problem, Schauder fixed point theorem, completely continuous operator

中图分类号: 

  • O175.8
[1] KILBAS A A, SRIVASTAVE H M, TRUJILLO J J. Theory and applications of fractional differential equations[M]. Amsterdam: Elsevier Besloten Vennootschap, 2006.
[2] LAKSHMIKANTHAN V, VATSALA A S. Basic theory of fractional differential equations[J]. Nonlinear Analysis, 2008, 69(8):2677-2682.
[3] AGARWAL R P, BENCHOHRA M, HAMZNI S. Boundary value problems for fractional differential equations[J]. Georgian Mathematical Journal, 2009, 16(3):401-411.
[4] SU Xinwei. Boundary value problem for a coupled system of nonlinear fractional differential equations[J]. Applied Mathematics Letters, 2009, 22(1):64-69.
[5] ZHANG Shuqin. The existence of a positive solution for a nonlinear fractional differential equations[J]. Journal of Mathematical Analysis and Applications, 2000, 252(2):804-812.
[6] MCRAE F A. Monotone iterative technique and results for fractional differential equations[J]. Nonlinear Analysis, 2009, 71(12):6093-6096.
[7] YU Cheng, GAO Guozhu. Existence of fractional differential equations[J]. Journal of Mathematical Analysis and Applications, 2005, 31(1):26-29.
[8] DENG J Q, MA L F. Existence and uniqueness of solutions of initial value problems for uniqueness fractional differential equations[J]. Applied Mathematics Letters, 2010, 23(6):676-680.
[9] VALÉRIO D, COSTA J S. Variable-order fractional derivatives and their numerical approximations[J]. Signal Processing, 2011, 91(3):470-483.
[10] LORENZOS C F, HARTIEY T T. Variable order and distributed order fractional operators[J]. Nonlinear Dynamics, 2002, 29(4):57-98.
[11] SUN H G, CHEN W, WEI H, et al. Variable-order fractional differential operators in anomalous diffusion modeling[J]. Statistical Mechanics and its Applications, 2009, 388(21):4586-4592.
[12] TSENG C C. Design of variable and adaptive fractional order FIR differentiators[J]. Signal Processing, 2006, 86(10):2554-2566.
[13] RAZMINIA A, DIZAJI A F, MAJD V J. Solution existence for non-autonomous variable-order fractional differential equations[J]. Mathematical and Computer Modelling, 2012, 55(3):1106-1117.
[14] LORENZO C F, HARTLEY T T. Variable order and distributed order fractional operators[J]. Nonlinear Dynamics, 2002, 29(4):57-98.
[15] ZHANG Shuqin. Exisitence and uniqueness result of solutions to initial value problems of fractional differential equations of variable-order[J]. Journal of Mathematical Analysis and Applications, 2013, 4(1):82-98.
[16] ZHANG Shuqin. The uniqueness result of solutions to initial value problems of differential equations of variable-order[J]. Rev R Acad Cienc Exactas Fís Nat Ser A Math, 2018, 112(2):407-423.
[1] 陈彬. 格林函数变号的三阶周期边值问题[J]. 山东大学学报(理学版), 2016, 51(8): 79-83.
[2] 吴成明. 二阶奇异耦合系统正周期解的存在性[J]. 山东大学学报(理学版), 2015, 50(10): 81-88.
[3] 李娇. Caputo分数阶微分方程初值问题解的存在性与惟一性[J]. J4, 2013, 48(4): 60-64.
[4] 王建国,刘春晗. Banach空间积-微分方程含间断项边值问题的解[J]. J4, 2013, 48(10): 18-22.
[5] 陈建名,刘锡平*,肖羽. 半无穷区间上二阶微分方程积分边值问题多个正解的存在性[J]. J4, 2011, 46(4): 37-41.
[6] 李耀红1,2,张海燕1. Banach空间中二阶非线性混合型积分-微分方程初值问题的解[J]. J4, 2010, 45(12): 93-97.
[7] 娄国久 张兴秋 王建国. Banach空间一阶非线性混合型积微分方程正解的存在性[J]. J4, 2009, 44(8): 74-79.
[8] 张明,路慧芹 . 二阶非线性脉冲周期边值问题多个正解的存在性[J]. J4, 2009, 44(4): 51-56 .
[9] 王建国,高庆龄 . 奇性(k,n-k)共轭边值问题解的存在惟一性[J]. J4, 2008, 43(3): 43-47 .
[10] 孟艳双,杨振起 . 一类概周期系数微分方程的概周期解[J]. J4, 2006, 41(5): 87-90 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!