您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (8): 82-91.doi: 10.6040/j.issn.1671-9352.0.2023.034

•   • 上一篇    下一篇

适型分数阶耦合系统正解的存在性和Ulam稳定性

倪云(),刘锡平#()   

  1. 上海理工大学理学院, 上海 200093
  • 收稿日期:2023-02-01 出版日期:2023-08-20 发布日期:2023-07-28
  • 通讯作者: 刘锡平 E-mail:nyny0418_h@163.com;xipingliu@usst.edu.cn
  • 作者简介:倪云(1998—), 女, 硕士研究生, 研究方向为常微分方程理论与应用研究. E-mail: nyny0418_h@163.com
  • 基金资助:
    上海市“科技创新行动计划”启明星培育(扬帆专项)项目(23YF1429100)

Existence and Ulam stability for positive solutions of conformable fractional coupled systems

Yun NI(),Xiping LIU#()   

  1. College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
  • Received:2023-02-01 Online:2023-08-20 Published:2023-07-28
  • Contact: Xiping LIU E-mail:nyny0418_h@163.com;xipingliu@usst.edu.cn

摘要:

研究了一类带p-Laplace算子的适型分数阶微分方程耦合系统非局部边值问题。首先, 通过构造一个特殊的Banach空间, 利用Schauder不动点定理和Banach压缩映射原理得到了系统正解的存在性与唯一性等多个结论, 给出了系统正解存在及唯一的充分条件。然后, 重点研究了系统的稳定性, 得到了系统具有广义Hyers-Ulam稳定性的结论。最后, 通过具体事例说明所得主要结论的适用性。

关键词: 适型分数阶导数, 耦合系统, p-Laplace算子, 非局部边值问题, Hyers-Ulam稳定性

Abstract:

A nonlocal boundary value problem for a class of conformable fractional differential equations coupled system with p-Laplacian operator are studied. First, by constructing a special Banach space and using the Schauder fixed-point theorem and Banach contraction mapping principle, several results on the existence and uniqueness for positive solutions to the system are obtained, and provide sufficient conditions for the existence and uniqueness of the solution. Then, the stability of the system is studied, and the conclusion that the system has the generalized Hyers-Ulam stability is obtained. Finally, the applicability of the main conclusions obtained is demonstrated through a specific example.

Key words: conformable fractional derivative, coupled system, p-Laplacian operator, nonlocal boundary value problem, Hyers-Ulam stability

中图分类号: 

  • O175.8
1 白占兵. 分数阶微分方程边值问题理论及应用[M]. 北京: 中国科学技术出版社, 2013.
BAI Zhanbing . Theory and application of fractional differential equation boundary value problems[M]. Beijing: China Science and Technology Press, 2013.
2 XIAO Y B , LIU J Z , ALKHATHLAN A . Informatisation of educational reform based on fractional differential equations[J]. Applied Mathematics and Nonlinear Sciences, 2021, 7 (2): 79- 90.
3 SUN Zhizhong , GAO Guanghua . Fractional differential equations: finite difference methods[M]. Berlin: De Gruyter, 2020.
4 PODLUBNY I . Fractional differential equations[M]. New York: Academic Press, 1999.
5 BASHIR A , JOHNNY L H , RODICA L . Boundary value problems for fractional differential equations and systems[M]. Singapore: World Scientific Publishing Company, 2021.
6 LIU Xiping , JIA Mei . A class of iterative functional fractional differential equation on infinite interval[J]. Applied Mathematics Letters, 2023, 136, 108473.
doi: 10.1016/j.aml.2022.108473
7 SU Xinwei . Boundary value problem for a coupled system of nonlinear fractional differential equations[J]. Applied Mathematics Letters, 2009, 22 (1): 64- 69.
doi: 10.1016/j.aml.2008.03.001
8 LIU Xiping , JIA Mei , GE Weigao . The method of lower and upper solutions for mixed fractional four-point boundary value problem with p-Laplacian operator[J]. Applied Mathematics Letters, 2017, 65, 56- 62.
doi: 10.1016/j.aml.2016.10.001
9 KHALIL R , AL HORANI M , YOUSEF A , et al. A new definition of fractional derivative[J]. Journal of Computational and Applied Mathematics, 2014, 264 (5): 65- 70.
10 ABDELJAWAD T . On conformable fractional calculus[J]. Journal of Computational and Applied Mathematics, 2015, 279 (1): 57- 66.
11 董晓玉, 白占兵, 张伟. 具有适型分数阶导数的非线性特征值问题的正解[J]. 山东科技大学学报(自然科学版), 2016, 35 (3): 85- 91.
doi: 10.16452/j.cnki.sdkjzk.2016.03.005
DONG Xiaoyu , BAI Zhanbing , ZHANG Wei . Positive solutions for nonlinear eigenvalue problems with conformable fractional differential derivative[J]. Journal of Shandong University of Science and Technology (Science Edition), 2016, 35 (3): 85- 91.
doi: 10.16452/j.cnki.sdkjzk.2016.03.005
12 TAJADODI H , KHAN Z A , IRSHAD A U , et al. Exact solutions of conformable fractional differential equations[J]. Results in Physics, 2021, 22, 103916.
doi: 10.1016/j.rinp.2021.103916
13 HADDOUCHI F . Existence of positive solutions for a class of conformable fractional differential equations with parameterized integral boundary conditions[J]. Kyungpook Mathematical Journal, 2021, 61 (1): 139- 153.
14 BENDOUA B , CABADA A , HAMMOUDI A . Existence results for systems of conformable fractional differential equations[J]. Archivum Mathematicum, 2019, 55 (2): 69- 82.
15 ALLAHVERDIEV B P , HUNA H , YALCINKAYA Y . Conformable fractional Sturm-Liouville equation[J]. Mathematical Methods in the Applied Sciences, 2019, 42 (10): 3508- 3526.
doi: 10.1002/mma.5595
16 LI M M , WANG J R , O'REGAN D . Existence and Ulam's stability for conformable fractional differential equations with constant coefficients[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 (4): 1791- 1812.
doi: 10.1007/s40840-017-0576-7
17 CASTRO L P , SILVA A S . On the solution and Ulam-Hyers-Rassias stability of a Caputo fractional boundary value problem[J]. Mathematical Biosciences and Engineering, 2022, 19 (11): 10809- 10825.
doi: 10.3934/mbe.2022505
18 ALSADI W , WEI Z C , MOROZ I , et al. Existence and stability theories for a coupled system involving p-Laplacian operator of a nonlinear Atangana-Baleanu fractional differential equations[J]. Fractals-Complex Geometry Patterns and Scaling in Nature and Society, 2022, 30 (1): 1793- 6543.
19 ALI Z . On Ulam's stability for a coupled systems of nonlinear implicit fractional differential equations[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 (5): 2681- 2699.
doi: 10.1007/s40840-018-0625-x
20 SOUSA JVD , DE OLIVEIRA EC . Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation[J]. Applied Mathematics Letters, 2018, 81, 50- 56.
21 AGARWAL R , HRISTOVA S , O'REGAN D . Ulam type stability for non-instantaneous impulsive Caputo fractional differential equations with finite state dependent delay[J]. Georgian Mathematical Journal, 2021, 28 (4): 499- 517.
22 WAN Fan , LIU Xiping , JIA Mei . Ulam-Hyers stability for conformable fractional impulsive integro-differential equations with the antiperiodic boundary conditions[J]. AIMS Mathematics, 2022, 7 (4): 6066- 6083.
23 LIU Xiping , JIA Mei . On the solvability of fractional differential equation model involving the p-Laplacian operator[J]. Computers and Mathematics with Applications, 2012, 64 (10): 3267- 3275.
[1] 张纪凤,张伟,韦慧,倪晋波. p-Laplace算子的分数阶Langevin型方程对偶反周期边值问题解的存在唯一性[J]. 《山东大学学报(理学版)》, 2022, 57(9): 91-100.
[2] 王培婷,李安然,魏重庆. 下临界Choquard型线性耦合系统基态解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(8): 62-67.
[3] 宋君秋,贾梅,刘锡平,李琳. p-Laplace算子分数阶非齐次边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 57-66.
[4] 吴成明. 二阶奇异耦合系统正周期解的存在性[J]. 山东大学学报(理学版), 2015, 50(10): 81-88.
[5] 綦伟青, 纪培胜, 卢海宁. 二元三次函数方程的解及在模糊Banach 空间上的稳定性[J]. 山东大学学报(理学版), 2015, 50(02): 60-66.
[6] 纪培胜1,綦伟青2,刘荣荣1. Banach代数上n-上循环的Hyers-Ulam稳定性[J]. J4, 2013, 48(4): 1-4.
[7] 孙涛1,高飞1,段晓东2. 四阶非局部边值问题的正解的存在性[J]. J4, 2010, 45(12): 62-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵君1,赵晶2,樊廷俊1*,袁文鹏1,3,张铮1,丛日山1. 水溶性海星皂苷的分离纯化及其抗肿瘤活性研究[J]. J4, 2013, 48(1): 30 -35 .
[2] 杨永伟1,2,贺鹏飞2,李毅君2,3. BL-代数的严格滤子[J]. 山东大学学报(理学版), 2014, 49(03): 63 -67 .
[3] 李敏1,2,李歧强1. 不确定奇异时滞系统的观测器型滑模控制器[J]. 山东大学学报(理学版), 2014, 49(03): 37 -42 .
[4] 罗斯特,卢丽倩,崔若飞,周伟伟,李增勇*. Monte-Carlo仿真酒精特征波长光子在皮肤中的传输规律及光纤探头设计[J]. J4, 2013, 48(1): 46 -50 .
[5] 田学刚, 王少英. 算子方程AXB=C的解[J]. J4, 2010, 45(6): 74 -80 .
[6] 霍玉洪,季全宝. 一类生物细胞系统钙离子振荡行为的同步研究[J]. J4, 2010, 45(6): 105 -110 .
[7] 廖明哲. 哥德巴赫的两个猜想[J]. J4, 2013, 48(2): 1 -14 .
[8] 赵同欣1,刘林德1*,张莉1,潘成臣2,贾兴军1. 紫藤传粉昆虫与花粉多型性研究[J]. 山东大学学报(理学版), 2014, 49(03): 1 -5 .
[9] 王开荣,高佩婷. 建立在DY法上的两类混合共轭梯度法[J]. 山东大学学报(理学版), 2016, 51(6): 16 -23 .
[10] 何海伦, 陈秀兰*. 变性剂和缓冲系统对适冷蛋白酶MCP-01和中温蛋白酶BP-01构象影响的圆二色光谱分析何海伦, 陈秀兰*[J]. 山东大学学报(理学版), 2013, 48(1): 23 -29 .