《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (8): 92-103.doi: 10.6040/j.issn.1671-9352.0.2022.539
摘要:
在齐次Neumann边界条件下, 研究具有时滞延迟效应的Lengyel-Epstein反应扩散系统。首先, 以时滞参数作为分支参数, 研究时滞效应对该系统正常数平衡点稳定性的影响, 并得到产生Hopf分支的条件; 其次, 利用偏泛函微分方程的规范型理论和中心流形定理, 给出Hopf分支方向和分支周期解的稳定性; 最后, 借助MATLAB软件进行数值模拟, 验证结论。
中图分类号:
1 |
LENGYEL I , EPSTEIN I R . Modeling of turing structure in the chlorite-iodide-malonic-acid-starch reaction system[J]. Science, 1991, 251 (4994): 650- 652.
doi: 10.1126/science.251.4994.650 |
2 |
LENGYEL I , EPSTEIN I R . A chemical approach to designing turing-patterns in reaction-diffusion system[J]. Proceedings of the National Academy of Sciences, 1992, 89 (9): 3977- 3979.
doi: 10.1073/pnas.89.9.3977 |
3 | JANG J , NI W M , TANG M X . Global bifurcation and structure of Turing patterns in 1-D Lengyel-Epstein model[J]. Journal of Dynamics & Differential Equations, 2005, 16 (2): 297- 320. |
4 |
NI Weiming , TANG Moxun . Turing patterns in the Lengyel-Epstein system for the CIMA reaction[J]. Transactions of the American Mathematical Society, 2005, 357 (10): 3953- 3969.
doi: 10.1090/S0002-9947-05-04010-9 |
5 | DU Linglong , WANG Mingxin . Hopf bifurcation analysis in the 1-D Lengyel-Epstein reaction-diffusion model[J]. Journal of Mathematical Analysis & Applications, 2010, 366 (2): 473- 485. |
6 |
YI Fengqi , WEI Junjie , SHI Junping . Diffusion-driven instability and bifurcation in the Lengyel-Epstein system[J]. Nonlinear Analysis: Real World Applications, 2008, 9 (3): 1038- 1051.
doi: 10.1016/j.nonrwa.2007.02.005 |
7 |
YI Fengqi , WEI Junjie , SHI Junping . Global asymptotical behavior of the Lengyel-Epstein reaction-diffusion system[J]. Applied Mathematics Letters, 2009, 22 (1): 52- 55.
doi: 10.1016/j.aml.2008.02.003 |
8 | JIN Jiayin , SHI Junping , WEI Junjie , et al. Bifurcations of patterned solutions in the diffusive Lengyel-Epstein system of CIMA chemical reactions[J]. Rocky Mountain Journal of Mathematics, 2013, 43 (5): 1637- 1674. |
9 |
DONG Yaying , ZHANG Shunli , LI Shanbing . Spatiotemporal patterns in the Lengyel-Epstein reaction-diffusion model[J]. Advances in Difference Equations, 2016, 2016 (1): 1- 15.
doi: 10.1186/s13662-015-0739-5 |
10 | CELIK C , MERDAN H . Hopf bifurcation analysis of a system of coupled delayed-differential equations[J]. Applied Mathematics & Computation, 2013, 219 (12): 6605- 6617. |
11 |
MERDAN H , KAYAN S . Hopf bifurcations in Lengyel-Epstein reaction-diffusion model with discrete time delay[J]. Nonlinear Dynamics, 2015, 79 (3): 1757- 1770.
doi: 10.1007/s11071-014-1772-8 |
12 | MERDAN H , KAYAN S . Delay effects on the dynamics of the Lengyel-Epstein reaction-diffusion model[M]. Cham, Switzerland: Springer International Publishing, 2016. |
13 | LIU Qingsong, LIN Yiping, CAO Jingnan, et al. Chaos and Hopf bifurcation analysis of the delayed local Lengyel-Epstein system[J/OL]. Discrete Dynamics in Nature & Society, 2014[2022-10-08]. http://dx.doi.org/10.1155/2014/139375. |
14 | ZHANG Cunhua , HE Ye . Multiple stability switches and Hopf bifurcations induced by the delay in a Lengyel-Epstein chemical reaction system[J]. Applied Mathematics & Computation, 2020, 378, 1- 22. |
15 | LIN X D , SO W H J , WU J H . Center manifolds for partial differential equations with delays[J]. Proceedings of the Royal Society of Edinburgh, 1992, 122 (34): 237- 254. |
16 | HASSARD B D , KAZARINOFF N D , WAN Y H . Theory and applications of Hopf bifurcation[M]. Cambridge: Cambridge University Press, 1981. |
[1] | 贺子鹏,董亚莹. 一类异质环境下Holling Ⅱ型竞争模型的稳态解[J]. 《山东大学学报(理学版)》, 2023, 58(8): 73-81. |
[2] | 倪云,刘锡平. 适型分数阶耦合系统正解的存在性和Ulam稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(8): 82-91. |
[3] | 胡玉文,徐久成,张倩倩. 决策演化集的李雅普诺夫稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(7): 52-59. |
[4] | 刘云,朱鹏俊,陈路遥,宋凯. 基于边缘计算的收益激励算法对区块链分片的优化[J]. 《山东大学学报(理学版)》, 2023, 58(7): 88-96. |
[5] | 孙盼,张旭萍. 具有无穷时滞脉冲发展方程解的连续依赖性[J]. 《山东大学学报(理学版)》, 2023, 58(6): 77-83, 91. |
[6] | 许越,韩晓玲. 具有双时滞的媒体效应对西藏地区包虫病控制的影响[J]. 《山东大学学报(理学版)》, 2023, 58(5): 53-62. |
[7] | 黄钰,高广花. 第三类Dirichlet边界下四阶抛物方程的紧差分格式[J]. 《山东大学学报(理学版)》, 2023, 58(4): 16-28. |
[8] | 郭改慧,王晶晶,李旺瑞. 一类具有时滞的植被-水反应扩散模型的Hopf分支[J]. 《山东大学学报(理学版)》, 2023, 58(10): 32-42. |
[9] | 李永花,张存华. 具有Dirichlet边界条件的单种群时滞反应扩散模型的稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(10): 122-126. |
[10] | 陈刚,张睿. 一类具有预防接种的两菌株共感模型的传染病动力学分析[J]. 《山东大学学报(理学版)》, 2023, 58(10): 84-96. |
[11] | 李蕾,叶永升. 具有Dirichlet有界条件的反应扩散Cohen-Grossberg神经网络指数稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(10): 67-74. |
[12] | 李晓伟,李桂花. 考虑环境病毒影响的COVID-19模型的动力学性态研究[J]. 《山东大学学报(理学版)》, 2023, 58(1): 10-15. |
[13] | 霍林杰,张存华. 具有Holling-Ⅲ型功能反应的捕食扩散系统的稳定性和Hopf分支[J]. 《山东大学学报(理学版)》, 2023, 58(1): 16-24. |
[14] | 孙春杰,张存华. 一类Beddington-DeAngelis-Tanner型扩散捕食系统的稳定性和Turing不稳定性[J]. 《山东大学学报(理学版)》, 2022, 57(9): 83-90. |
[15] | 苏晓艳,陈京荣,尹会玲. 广义区间值Pythagorean三角模糊集成算子及其决策应用[J]. 《山东大学学报(理学版)》, 2022, 57(8): 77-87. |
|