《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (8): 82-91.doi: 10.6040/j.issn.1671-9352.0.2023.034
摘要:
研究了一类带p-Laplace算子的适型分数阶微分方程耦合系统非局部边值问题。首先, 通过构造一个特殊的Banach空间, 利用Schauder不动点定理和Banach压缩映射原理得到了系统正解的存在性与唯一性等多个结论, 给出了系统正解存在及唯一的充分条件。然后, 重点研究了系统的稳定性, 得到了系统具有广义Hyers-Ulam稳定性的结论。最后, 通过具体事例说明所得主要结论的适用性。
中图分类号:
1 | 白占兵. 分数阶微分方程边值问题理论及应用[M]. 北京: 中国科学技术出版社, 2013. |
BAI Zhanbing . Theory and application of fractional differential equation boundary value problems[M]. Beijing: China Science and Technology Press, 2013. | |
2 | XIAO Y B , LIU J Z , ALKHATHLAN A . Informatisation of educational reform based on fractional differential equations[J]. Applied Mathematics and Nonlinear Sciences, 2021, 7 (2): 79- 90. |
3 | SUN Zhizhong , GAO Guanghua . Fractional differential equations: finite difference methods[M]. Berlin: De Gruyter, 2020. |
4 | PODLUBNY I . Fractional differential equations[M]. New York: Academic Press, 1999. |
5 | BASHIR A , JOHNNY L H , RODICA L . Boundary value problems for fractional differential equations and systems[M]. Singapore: World Scientific Publishing Company, 2021. |
6 |
LIU Xiping , JIA Mei . A class of iterative functional fractional differential equation on infinite interval[J]. Applied Mathematics Letters, 2023, 136, 108473.
doi: 10.1016/j.aml.2022.108473 |
7 |
SU Xinwei . Boundary value problem for a coupled system of nonlinear fractional differential equations[J]. Applied Mathematics Letters, 2009, 22 (1): 64- 69.
doi: 10.1016/j.aml.2008.03.001 |
8 |
LIU Xiping , JIA Mei , GE Weigao . The method of lower and upper solutions for mixed fractional four-point boundary value problem with p-Laplacian operator[J]. Applied Mathematics Letters, 2017, 65, 56- 62.
doi: 10.1016/j.aml.2016.10.001 |
9 | KHALIL R , AL HORANI M , YOUSEF A , et al. A new definition of fractional derivative[J]. Journal of Computational and Applied Mathematics, 2014, 264 (5): 65- 70. |
10 | ABDELJAWAD T . On conformable fractional calculus[J]. Journal of Computational and Applied Mathematics, 2015, 279 (1): 57- 66. |
11 |
董晓玉, 白占兵, 张伟. 具有适型分数阶导数的非线性特征值问题的正解[J]. 山东科技大学学报(自然科学版), 2016, 35 (3): 85- 91.
doi: 10.16452/j.cnki.sdkjzk.2016.03.005 |
DONG Xiaoyu , BAI Zhanbing , ZHANG Wei . Positive solutions for nonlinear eigenvalue problems with conformable fractional differential derivative[J]. Journal of Shandong University of Science and Technology (Science Edition), 2016, 35 (3): 85- 91.
doi: 10.16452/j.cnki.sdkjzk.2016.03.005 |
|
12 |
TAJADODI H , KHAN Z A , IRSHAD A U , et al. Exact solutions of conformable fractional differential equations[J]. Results in Physics, 2021, 22, 103916.
doi: 10.1016/j.rinp.2021.103916 |
13 | HADDOUCHI F . Existence of positive solutions for a class of conformable fractional differential equations with parameterized integral boundary conditions[J]. Kyungpook Mathematical Journal, 2021, 61 (1): 139- 153. |
14 | BENDOUA B , CABADA A , HAMMOUDI A . Existence results for systems of conformable fractional differential equations[J]. Archivum Mathematicum, 2019, 55 (2): 69- 82. |
15 |
ALLAHVERDIEV B P , HUNA H , YALCINKAYA Y . Conformable fractional Sturm-Liouville equation[J]. Mathematical Methods in the Applied Sciences, 2019, 42 (10): 3508- 3526.
doi: 10.1002/mma.5595 |
16 |
LI M M , WANG J R , O'REGAN D . Existence and Ulam's stability for conformable fractional differential equations with constant coefficients[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 (4): 1791- 1812.
doi: 10.1007/s40840-017-0576-7 |
17 |
CASTRO L P , SILVA A S . On the solution and Ulam-Hyers-Rassias stability of a Caputo fractional boundary value problem[J]. Mathematical Biosciences and Engineering, 2022, 19 (11): 10809- 10825.
doi: 10.3934/mbe.2022505 |
18 | ALSADI W , WEI Z C , MOROZ I , et al. Existence and stability theories for a coupled system involving p-Laplacian operator of a nonlinear Atangana-Baleanu fractional differential equations[J]. Fractals-Complex Geometry Patterns and Scaling in Nature and Society, 2022, 30 (1): 1793- 6543. |
19 |
ALI Z . On Ulam's stability for a coupled systems of nonlinear implicit fractional differential equations[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 (5): 2681- 2699.
doi: 10.1007/s40840-018-0625-x |
20 | SOUSA JVD , DE OLIVEIRA EC . Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation[J]. Applied Mathematics Letters, 2018, 81, 50- 56. |
21 | AGARWAL R , HRISTOVA S , O'REGAN D . Ulam type stability for non-instantaneous impulsive Caputo fractional differential equations with finite state dependent delay[J]. Georgian Mathematical Journal, 2021, 28 (4): 499- 517. |
22 | WAN Fan , LIU Xiping , JIA Mei . Ulam-Hyers stability for conformable fractional impulsive integro-differential equations with the antiperiodic boundary conditions[J]. AIMS Mathematics, 2022, 7 (4): 6066- 6083. |
23 | LIU Xiping , JIA Mei . On the solvability of fractional differential equation model involving the p-Laplacian operator[J]. Computers and Mathematics with Applications, 2012, 64 (10): 3267- 3275. |
[1] | 张纪凤,张伟,韦慧,倪晋波. 带p-Laplace算子的分数阶Langevin型方程对偶反周期边值问题解的存在唯一性[J]. 《山东大学学报(理学版)》, 2022, 57(9): 91-100. |
[2] | 王培婷,李安然,魏重庆. 下临界Choquard型线性耦合系统基态解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(8): 62-67. |
[3] | 宋君秋,贾梅,刘锡平,李琳. 具p-Laplace算子分数阶非齐次边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 57-66. |
[4] | 吴成明. 二阶奇异耦合系统正周期解的存在性[J]. 山东大学学报(理学版), 2015, 50(10): 81-88. |
[5] | 綦伟青, 纪培胜, 卢海宁. 二元三次函数方程的解及在模糊Banach 空间上的稳定性[J]. 山东大学学报(理学版), 2015, 50(02): 60-66. |
[6] | 纪培胜1,綦伟青2,刘荣荣1. Banach代数上n-上循环的Hyers-Ulam稳定性[J]. J4, 2013, 48(4): 1-4. |
[7] | 孙涛1,高飞1,段晓东2. 四阶非局部边值问题的正解的存在性[J]. J4, 2010, 45(12): 62-66. |
|