您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (8): 88-94.doi: 10.6040/j.issn.1671-9352.0.2021.615

• • 上一篇    下一篇

BKK方程的分支现象与非线性波解

韩青秀,刘红霞,伍芸*   

  1. 贵州师范大学数学科学学院, 贵州 贵阳 550025
  • 出版日期:2022-08-20 发布日期:2022-06-29
  • 作者简介:韩青秀(1995— ),女,硕士研究生,研究方向为偏微分方程. E-mail:2418520541@qq.com*通信作者简介:伍芸(1973— ),女,博士,教授,硕士生导师,研究方向为微分方程及动力系统. E-mail:wuyun73224@163.com
  • 基金资助:
    国家自然科学基金资助项目(12161019)

Bifurcation phenomena and nonlinear wave solutions of BKK equation

HAN Qing-xiu, LIU Hong-xia, WU Yun*   

  1. School of Mathematics Science, Guizhou Normal University, Guiyang 550025, Guizhou, China
  • Online:2022-08-20 Published:2022-06-29

摘要: 研究Broer-Kaup-Kupershmidt(BKK)方程的分支现象与非线性波解。首先,通过行波变换,求得BKK方程的首次积分与奇点,接着运用动力系统定性理论和分支方法给出BKK方程在各区域中的相图,并获得方程的一些非线性波解;进一步,扭波的三种分支现象被揭示;最后,利用Maple软件对这些分支现象进行模拟。

关键词: Broer-Kaup-Kupershmidt方程, 非线性波解, 分支现象

Abstract: The bifurcation phenomena and nonlinear wave solutions of Broer-Kaup-Kupershmidt(BKK)equation are studied. Firstly, the first integral and singularities of the BKK equation are obtained by travelling wave transformation. Then the bifurcation phase portraits of the BKK equation in each region are presented by using the bifurcation method and qualitative theory of dynamical systems, and some nonlinear wave solutions of the equation are obtained. Furthermore, three bifurcation phenomena of kink wave are revealed. Finally, Maple software is used to simulate these bifurcation phenomena.

Key words: Broer-Kaup-Kupershmidt equation, nonlinear wave solution, bifurcation phenomenon

中图分类号: 

  • O175.29
[1] ARSHAD M, SEADAWY A R, LU D, et al. Travelling wave solutions of Drinfeld-Sokolov-Wilson, Whitham-Broer-Kaup and(2+1)-dimensional Broer-Kaup-Kupershmit equations and their applications[J]. Chinese Journal of Physics, 2017, 55(3):780-797.
[2] XU Guiqiong, LI Zhibin. Exact travelling wave solutions of the Whitham-Broer-Kaup and Broer-Kaup-Kupershmidt equations[J]. Chaos, Solitons and Fractals, 2004, 24(2):549-556.
[3] 翁献君,杨先林.(2+1)维Broer-Kaup-Kupershmidt方程的精确解[J]. 通信技术,2008,41(10):216-217. WENG Xianjun, YANG Xianlin. The exact solution of(2+1)-dimensional Broer-Kaup-Kupershmidt equation[J]. Communication Technology, 2008, 41(10):216-217.
[4] 陈未路,张雯婷,张李溥,等.(2+1)维Broer-Kaup-Kupershmidt方程dromions之间的相互作用(英文)[J]. 理论物理通讯,2013,59(1):5. CHEN Weilu, ZHANG Wenting, ZHANG Lipu, et al. Interaction behaviors between special dromions in the(2+1)-dimensional Broer-Kaup-Kupershmidt equation[J]. Theoretical Physical Communication, 2013, 59(1):5.
[5] YOUNIS M, RIZVI S, BALEANU D, et al. Lump and rogue wave solutions for the Broer-Kaup-Kupershmidt system[J]. Chinese Journal of Physics, 2020, 68:19-27.
[6] WEN Xiaoyong. N-soliton solutions and localized structures for the(2+1)-dimensional Broer-Kaup-Kupershmidt system[J]. Nonlinear Analysis Real World Applications, 2011, 12(6):3346-3355.
[7] KASSEM M M, RASHED A S. N-solitons and cuspon waves solutions of(2+1)-dimensional Broer-Kaup-Kupershmidt equations via hidden symmetries of lie optimal system-science-direct[J]. Chinese Journal of Physics, 2019, 57:90-104.
[8] TANG Y, YUEN M, ZHANG L. Double wronskian solutions to the(2+1)-dimensional Broer-Kaup-Kupershmidt equation[J]. Applied Mathematics Letters, 2020, 105:106285.
[9] YOMBA E. The extended Fans sub-equation method and its application to KdV-MKdV, BKK and variant Boussinesq equations[J]. Physics Letters A, 2005, 336(6):463-476.
[10] 王晓民,苏道毕力格,庞晶.(2+1)维Broer-Kaup-Kupershmidt方程组的行波解[J]. 数学的实践与认识,2015, 45(16):203-208. WANG Xiaoming, SUDAO Bilige, PANG Jing. Traveling wave solution of(2+1)-dimensional Broer-Kaup-Kupershmidt equations[J]. Practice and Knowledge of Mathematics, 2015, 45(16):203-208.
[11] 张芸芝,江波.(2+1)维Broer-Kaup-Kupershmidt方程的同宿轨道与孤立波解[J]. 江苏技术师范学院学报,2012,18(4):64-67. ZHANG Yunzhi, JIANG Bo. Homoclinic orbit with isolated wave solutions of(2+1)-dimensional Broer-Kaup-Kupershmidt equation[J]. Journal of Jiangsu Technical Normal College, 2012, 18(4):64-67.
[12] WU Yun, LIU Zhengrong. New types of nonlinear waves and bifurcation phenomena in Schamel-Korteweg-de Vries equation[J/OL]. Abstract and Applied Analysis, 2013[2022-1-10].https://doi.org/10.1155/2013/483492.
[13] WU Yun, LIU Zhengrong. Bifurcation phenomena of nonlinear waves in a generalized Zakharov-Kuznetsov equation[J/OL]. Advances in Mathematical Physics, 2013[2022-1-10].https://doi.org/10.1155/2013/812120.
[14] SONG Ming, LI Shaoyong, CAO Jun. New exact solutions for the(2+1)-dimensional Broer-Kaup-Kupershmidt equations[J/OL]. Abstract and Applied Analysis, 2010[2022-1-10].https://doi.org/10.1155/2010/652649.
[15] 唐亚宁,陈燕南.(2+1)维Broer-Kaup-Kupershmidt方程的分支和行波解(英文)[J]. 纺织高校基础科学学报,2013,26(3):6. TANG Yaning, CHEN Yanna. Bifurcations and traveling wave solutions for the(2+1)-dimensional Broer-Kaup-Kupershmidt equation[J]. Basic Sciences Journal of Textile Universities, 2013, 26(3):6.
[16] 李继彬.非线性波方程研究的动力系统方法和分支与混沌[EB/OL].(2007-01-29)[2022-1-10]. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=SNAD000001222457&DbName=SNAD2012. LI Jibin. Nonlinear wave equations study on dynamical system methods and branching with chaos[EB/OL].(2007-01-29)[2022-1-10].https://kns.cnki.net/kcms/detail/detail.aspx?FileName=SNAD000001222457&DbName=SNAD2012.
[17] 李少勇.几类偏微分方程的非线性波解及其分支[D]. 广州:华南理工大学,2015. LI Shaoyong. Nonlinear wave solutions of several classes of partial differential equations and their branches[D]. Guangzhou: South China University of Technology, 2015.
[1] 董莉. 两类非线性波动方程解的爆破时间的下确界[J]. 山东大学学报(理学版), 2017, 52(4): 56-60.
[2] 付娟,张睿,王彩军,张婧. 具有Beddington-DeAngelis功能反应项的捕食-食饵扩散模型的稳定性[J]. 山东大学学报(理学版), 2016, 51(11): 115-122.
[3] 董建伟,娄光谱,王艳萍. 一个半导体简化能量输运模型稳态解的唯一性[J]. 山东大学学报(理学版), 2016, 51(2): 37-41.
[4] 吕红杰, 刘静静, 齐静, 刘硕. 弱耗散μ-Hunter-Saxton方程的爆破[J]. 山东大学学报(理学版), 2015, 50(05): 55-59.
[5] 董建伟, 程少华, 王艳萍. 一维稳态量子能量输运模型的古典解[J]. 山东大学学报(理学版), 2015, 50(03): 52-56.
[6] 陈志辉,王真真,程永宽*. 拟线性薛定谔方程的孤立解[J]. 山东大学学报(理学版), 2014, 49(2): 58-62.
[7] 刘艳芹,徐明瑜,蒋晓芸 . 分数阶非线性对流-扩散方程及其解[J]. J4, 2007, 42(1): 35-39 .
[8] 石长光 . Faddeev模型中的多孤立子解[J]. J4, 2007, 42(7): 38-40 .
[9] 陈鹏玉,马维凤,Ahmed Abdelmonem. 一类分数阶随机发展方程非局部问题mild解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 13-23.
[10] 张申贵. 变指数基尔霍夫型分数阶方程解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 48-55.
[11] 王海权,种鸽子. 两分量Novikov系统初值问题解的局部Gevrey正则性与解析性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 56-63.
[12] 孟希望,王娟. de Sitter时空中波动方程初值问题解的爆破[J]. 《山东大学学报(理学版)》, 2020, 55(6): 64-75.
[13] 杜亚利,汪璇. 带非线性阻尼的非自治Berger方程的时间依赖拉回吸引子[J]. 《山东大学学报(理学版)》, 2021, 56(6): 30-41.
[14] 周艳霞,王薪茹,徐秀娟. 非标准增长条件下A-调和方程弱解的梯度估计[J]. 《山东大学学报(理学版)》, 2021, 56(6): 47-55.
[15] 欧阳柏平,肖胜中. 一类具有空变系数的非线性项的半线性双波动方程解的全局非存在性[J]. 《山东大学学报(理学版)》, 2021, 56(9): 59-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨军. 金属基纳米材料表征和纳米结构调控[J]. 山东大学学报(理学版), 2013, 48(1): 1 -22 .
[2] 何海伦, 陈秀兰*. 变性剂和缓冲系统对适冷蛋白酶MCP-01和中温蛋白酶BP-01构象影响的圆二色光谱分析何海伦, 陈秀兰*[J]. 山东大学学报(理学版), 2013, 48(1): 23 -29 .
[3] 赵君1,赵晶2,樊廷俊1*,袁文鹏1,3,张铮1,丛日山1. 水溶性海星皂苷的分离纯化及其抗肿瘤活性研究[J]. J4, 2013, 48(1): 30 -35 .
[4] 孙小婷1,靳岚2*. DOSY在寡糖混合物分析中的应用[J]. J4, 2013, 48(1): 43 -45 .
[5] 罗斯特,卢丽倩,崔若飞,周伟伟,李增勇*. Monte-Carlo仿真酒精特征波长光子在皮肤中的传输规律及光纤探头设计[J]. J4, 2013, 48(1): 46 -50 .
[6] 杨伦,徐正刚,王慧*,陈其美,陈伟,胡艳霞,石元,祝洪磊,曾勇庆*. RNA干扰沉默PID1基因在C2C12细胞中表达的研究[J]. J4, 2013, 48(1): 36 -42 .
[7] 冒爱琴1, 2, 杨明君2, 3, 俞海云2, 张品1, 潘仁明1*. 五氟乙烷灭火剂高温热解机理研究[J]. J4, 2013, 48(1): 51 -55 .
[8] 杨莹,江龙*,索新丽. 容度空间上保费泛函的Choquet积分表示及相关性质[J]. J4, 2013, 48(1): 78 -82 .
[9] 李永明1, 丁立旺2. PA误差下半参数回归模型估计的r-阶矩相合[J]. J4, 2013, 48(1): 83 -88 .
[10] 董伟伟. 一种具有独立子系统的决策单元DEA排序新方法[J]. J4, 2013, 48(1): 89 -92 .