山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (05): 55-59.doi: 10.6040/j.issn.1671-9352.0.2014.275
吕红杰, 刘静静, 齐静, 刘硕
LÜ Hong-jie, LIU Jing-jing, QI Jing, LIU Shuo
摘要: 研究了弱耗散μ-Hunter-Saxton方程Caucly问题的爆破现象。给出了一个新的爆破结果,推导出爆破强解精确的爆破率。
中图分类号:
[1] HUNTER J, SAXTON R. Dynamics of director fields[J]. SIAM Journal on Applied Mathematics, 1991, 51(6):1498-1521. [2] YIN Zhaoyang. On the structure of solutions to the periodic Hunter-Saxton equation[J]. SIAM Journal on Mathematical Analysis, 2005, 36(1):272-283. [3] CAMASSA R, HOLM D. An integrable shallow water equation with peaked solitons[J]. Physical Review Letters, 1993, 71(11):1661-1664. [4] KHESIN B, LENELLS J, MISIOLEK G. Generalized Hunter-Saxton equation and the geometry of the group of circle diffeomorphisms[J]. Mathematische Annalen, 2008, 342:617-656. [5] GHIDAGLIA J M. Weakly damped forced forced Korteweg-de Vries equations behave as finite dimensional dynamical system in the long time[J]. Journal of Differential Equations, 1998, 74(2):369-390. [6] OTT E, SUDAN R N. Damping of solitary waves[J]. Physics of Fluids, 1970, 13(6):1432-1434. [7] WEI Xuemei, YIN Zhaoyang. Global existence and blow-up phenomena for the periodic Hunter-Saxton equation with weak dissipation[J]. Journal of Nonlinear Mathematical Physics, 2011, 18(01):1-11. [8] LIU Jingjing, YIN Zhaoyang. On the Cauchy problem of a weakly dissipative μ-Hunter-Saxton equation[J]. Annales de l'Institut Henri Poincaré(C) Analyse Non Linéaire, 2014, 31(2):267-279. [9] LIU Jingjing. Global weak solutions for the weakly dissipative μ-Hunter-Saxton equation[J]. Ukrainian Mathematical Journal, 2014, 65(2):1217-1230. [10] ESCHER J, KOHLMANN M, KOLEV B. Geometric aspects of the periodic μDP equation[J]. Progress in Nonlinear Differential Equations and Their Applications, 2011, 80:193-209. [11] CONSTANTIN A, ESCHER J. Wave breaking for nonlinear nonlocal shallow water equations[J]. Acta Mathematica, 1998, 181(2):299-243. |
[1] | 董莉. 两类非线性波动方程解的爆破时间的下确界[J]. 山东大学学报(理学版), 2017, 52(4): 56-60. |
[2] | 刘洋,达朝究,李富明. Nehari流形在一类半线性抛物方程爆破中的应用[J]. 山东大学学报(理学版), 2016, 51(1): 123-127. |
[3] | 林春进1,徐国静2. 高维Kaniadakis-Quarati 方程的有限时间爆破[J]. 山东大学学报(理学版), 2014, 49(06): 79-84. |
[4] | 宋丹丹,原保全*. 可压缩磁流体方程组的显式爆破解[J]. J4, 2012, 47(2): 26-30. |
[5] | 代丽美. 完全非线性一致椭圆方程的边界爆破问题[J]. J4, 2011, 46(6): 34-36. |
[6] | 阎小丽,原保全*. 欧拉方程的显式爆破解[J]. J4, 2011, 46(12): 104-107. |
[7] | 李凤萍. 三维广义磁流体方程组解的爆破准则[J]. J4, 2010, 45(4): 90-94. |
[8] | 陆求赐1,曾有栋2. 非局部波动方程组解的半无界问题[J]. J4, 2010, 45(10): 104-108. |
|