山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (05): 60-67.doi: 10.6040/j.issn.1671-9352.0.2014.214
李凤萍, 陈光霞
LI Feng-ping, CHEN Guang-xia
摘要: 利用能量分析法和Littlewood-Paley分解技术研究三维不可压磁微极流体方程组弱解的正则性, 得到了用压力p在 Lebegue空间, Lorentz空间, BMO空间和Besov空间中的范数控制的弱解正则准则。
中图分类号:
[1] GALDI G P, RIONERO S. A note on the existence and uniqueness of solutions of the micropolar fluid equations[J]. Internat J Engrg Sci, 1997, 15(2):105-108. [2] ROJAS-MEDAR M A, BOLDRINI J L. Magneto-micropolar fluid motion: existence of weak solutions[J]. Rev Mat Complut, 1998, 11:443-460. [3] ROJAS-MEDAR M A. Magneto-micropolar fluid motion: existence and uniqueness of strong solutions[J]. Math Nachr, 1997, 188(1):301-319. [4] ORTEGA-TORRES E E, ROJAS-MEDAR M A. Magneto-Micropolar fluid motion: Global existence of strong solutions[J]. Abstr Appl Anal, 1999, 4:109-125. [5] GALA S. Regularity criteria for the 3D magneto-microploar fluid equations in the Morrey-Campanato space[J]. Nonlinear Differential Equations Appl, 2010, 17:181-194. [6] XU Fuyi. Regularity criterion of weak solution for the 3D Magneto-micropolar fluid equations in Besov spaces[J]. Commun Nonlinear Sci Numer Simulat, 2012, 17(6):2426-2433. [7] YUAN Baoquan. Regularity of weak solutions to magneto-micropolar fluid equations[J]. Acta Mathematica Sci, 2010, 30B(5):1469-1480. [8] YUAN Jia. Existence theorem and blow-up criterion of the strong solutions to the magneto-micropolar fluid equations[J]. Math Meth Appl Sci, 2008, 31(9):1113-1130. [9] ZHANG Z J, YAO Z A, WANG X F. A regularity criterion for the 3D magneto-micropolar fluid equations in Triebel-Lizorkin spaces[J]. Nonlinear Anal, 2011, 74(6):2220-2225. [10] 朱华, 原保全. 三维磁微极流体方程弱解的正则性[J]. 应用数学, 2012, 25(2):288-294. ZHU Hua, YUAN Baoquan. Regularity of weak solutions to 3D magneto-micropolar equations[J]. Mathematica Applicata, 2012, 25(2):288-294. [11] 朱华, 原保全. 三维磁微极流体方程组弱解的压力正则性准则[J]. 云南大学学报:自然科学版, 2012, 34(5):503-509. ZHU Hua, YUAN Baoquan. Regularity criteria for the 3D magneto-micropolar equations in terms of the pressure[J]. Journal of Yunnan University: Natural Science, 2012, 34(5):503-509. [12] ERINGEN A C. Theory of micropolar fluids[J]. Journal of Mathematics and Mechanics, 1966, 16:1-18. [13] DONG Boqing, JIA Yan, CHEN Zhimin. Pressure regularity criteria of the three-dimensional micropolar fluid flows[J]. Math Meth Appl Sci, 2011, 34(5):595-606. [14] YUAN Baoquan. On regularity criteria for weak solutions to the micropolar fluid equations in Lorentz space[J]. Proc Amer Math Soc, 2010, 138(6):2025-2036." |
[1] | 甄苇苇,曾剑,任建龙. 基于变分理论与时间相关的抛物型反源问题[J]. 山东大学学报(理学版), 2018, 53(10): 61-71. |
[2] | 江静,高庆龄,张克玉. 时标上二阶Dirichlet边值问题弱解的存在性[J]. 山东大学学报(理学版), 2016, 51(6): 99-103. |
[3] | 边东芬,原保全*. 可压缩磁流体方程组整体弱解的不存在性[J]. J4, 2011, 46(4): 42-48. |
[4] | 许万银. 一类拟线性Neumann问题的多重解[J]. J4, 2009, 44(10): 39-42. |
|