您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (05): 55-59.doi: 10.6040/j.issn.1671-9352.0.2014.275

• 论文 • 上一篇    下一篇

弱耗散μ-Hunter-Saxton方程的爆破

吕红杰, 刘静静, 齐静, 刘硕   

  1. 郑州轻工业学院数学与信息科学学院, 河南 郑州 450002
  • 收稿日期:2014-06-16 出版日期:2015-05-20 发布日期:2015-05-29
  • 通讯作者: 刘静静(1983-),女,博士,讲师,研究方向为非线性色散波方程、p(x)拉普拉斯方程.E-mail:jingjing830306@163.com E-mail:jingjing830306@163.com
  • 作者简介:吕红杰(1977-),女,硕士,讲师,研究方向为非线性偏微分方程.E-mail:lhjsjf@163.com
  • 基金资助:
    国家自然科学基金数学天元基金资助项目(11326161);河南省教育厅科学技术研究重点资助项目(14A110011,12B110029);郑州轻工业学院博士基金资助项目(2013BSJJ052)

Blow-up of a weakly dissipative μ-Hunter-Saxton equation

LÜ Hong-jie, LIU Jing-jing, QI Jing, LIU Shuo   

  1. Department of Mathematics and Information Science, Zhengzhou University of Light Industry, Zhengzhou 450002, Henan, China
  • Received:2014-06-16 Online:2015-05-20 Published:2015-05-29

摘要: 研究了弱耗散μ-Hunter-Saxton方程Caucly问题的爆破现象。给出了一个新的爆破结果,推导出爆破强解精确的爆破率。

关键词: -Hunter-Saxton方程, 爆破, 强解, 弱耗散&mu

Abstract: We study the Cauchy problem of the weakly dissipative μ-Hunter-Saxton equation. The present work is mainly concerned with blow-up phenomena of the equation. We first present a new blow-up result for strong solutions to the equation. Then, we drive the precise blow-up rate for strong solutions to the equation.

Key words: blow-up, strong solution, a weakly dissipative μ-Hunter-Saxton equation

中图分类号: 

  • O175.29
[1] HUNTER J, SAXTON R. Dynamics of director fields[J]. SIAM Journal on Applied Mathematics, 1991, 51(6):1498-1521.
[2] YIN Zhaoyang. On the structure of solutions to the periodic Hunter-Saxton equation[J]. SIAM Journal on Mathematical Analysis, 2005, 36(1):272-283.
[3] CAMASSA R, HOLM D. An integrable shallow water equation with peaked solitons[J]. Physical Review Letters, 1993, 71(11):1661-1664.
[4] KHESIN B, LENELLS J, MISIOLEK G. Generalized Hunter-Saxton equation and the geometry of the group of circle diffeomorphisms[J]. Mathematische Annalen, 2008, 342:617-656.
[5] GHIDAGLIA J M. Weakly damped forced forced Korteweg-de Vries equations behave as finite dimensional dynamical system in the long time[J]. Journal of Differential Equations, 1998, 74(2):369-390.
[6] OTT E, SUDAN R N. Damping of solitary waves[J]. Physics of Fluids, 1970, 13(6):1432-1434.
[7] WEI Xuemei, YIN Zhaoyang. Global existence and blow-up phenomena for the periodic Hunter-Saxton equation with weak dissipation[J]. Journal of Nonlinear Mathematical Physics, 2011, 18(01):1-11.
[8] LIU Jingjing, YIN Zhaoyang. On the Cauchy problem of a weakly dissipative μ-Hunter-Saxton equation[J]. Annales de l'Institut Henri Poincaré(C) Analyse Non Linéaire, 2014, 31(2):267-279.
[9] LIU Jingjing. Global weak solutions for the weakly dissipative μ-Hunter-Saxton equation[J]. Ukrainian Mathematical Journal, 2014, 65(2):1217-1230.
[10] ESCHER J, KOHLMANN M, KOLEV B. Geometric aspects of the periodic μDP equation[J]. Progress in Nonlinear Differential Equations and Their Applications, 2011, 80:193-209.
[11] CONSTANTIN A, ESCHER J. Wave breaking for nonlinear nonlocal shallow water equations[J]. Acta Mathematica, 1998, 181(2):299-243.
[1] 董莉. 两类非线性波动方程解的爆破时间的下确界[J]. 山东大学学报(理学版), 2017, 52(4): 56-60.
[2] 刘洋,达朝究,李富明. Nehari流形在一类半线性抛物方程爆破中的应用[J]. 山东大学学报(理学版), 2016, 51(1): 123-127.
[3] 林春进1,徐国静2. 高维Kaniadakis-Quarati 方程的有限时间爆破[J]. 山东大学学报(理学版), 2014, 49(06): 79-84.
[4] 宋丹丹,原保全*. 可压缩磁流体方程组的显式爆破解[J]. J4, 2012, 47(2): 26-30.
[5] 代丽美. 完全非线性一致椭圆方程的边界爆破问题[J]. J4, 2011, 46(6): 34-36.
[6] 阎小丽,原保全*. 欧拉方程的显式爆破解[J]. J4, 2011, 46(12): 104-107.
[7] 李凤萍. 三维广义磁流体方程组解的爆破准则[J]. J4, 2010, 45(4): 90-94.
[8] 陆求赐1,曾有栋2. 非局部波动方程组解的半无界问题[J]. J4, 2010, 45(10): 104-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!