《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (6): 64-75.doi: 10.6040/j.issn.1671-9352.0.2019.459
• • 上一篇
孟希望,王娟
MENG Xi-wang, WANG Juan
摘要: 通过考虑一类特殊Klein-Gordon方程的Cauchy问题解来探究de Sitter时空中Klein-Gordon方程解的生命估计。用未知函数变换和运用热核的方法,以及半群的性质可以证明该Cauchy问题解的爆破,并求出解生命跨度的上界。
中图分类号:
[1] LAI Ningan, ZHOU Yi. The sharp lifespan extimate for semilinear damped wave equation with Fujita critical power in higher dimensions[J]. J Math Pures Appl, 2019, 123:229-243. [2] EINSTEIN A. Kosmologische Betrachtungen zur allgemeinen Relativitästheorie[M]. Berlin: Sitzungsber Preuss Akad Wiss, 1917. [3] DE SITTER W. On Einsteins theory of gravitation and its astronomical consequences(Ⅱ)[J]. Monthly Not Roy Astr Soc, 1917, 77(2):155-184. [4] DE SITTER W. On Einsteins theory of gravitation and its astronomical consequences(Ⅲ)[J]. Monthly Not Roy Astr Soc, 1917, 78(1):3-28. [5] HAWKING S W, ELLIS G F R. The large scale structure of space-time[M]. New York: Cambridge University Press, 1973. [6] RENDALL A D. Asymptotics of solutions of the Einstein equations with positive cosmological constant[J]. Ann Henri Poincaré, 2004, 5(6):1041-1064. [7] COLOMBINI F, SPAGNOLO S. An example of a weakly hyperbolic Cauchy problem not well posed in C∞[J]. Acta Math, 1982, 148(1):243-253. [8] COLOMBINI F, GIORGI E D, SPAGNOLO S. Sur les équations hyperboliques avec des coefficients qui ne dépendent que du temps[J]. Ann Scuola Norm Sup Pisa Cl Sci, 1979, 6(3):511-559. [9] YAGDJIAN K, GALSTIAN A. Fundamental solutions for the Klein-Gordon equation in de Sitter spacetime[J]. Comm Math Phys, 2009, 285(1):293-344. [10] YAGDJIAN K. The semilinear Klein-Gordon equation in de Sitter spacetime[J]. Discrete Contin Dyn Syst Ser S, 2009, 2(3):679-696. [11] YAGDJIAN K. On the global solutions of the Higgs boson equation[J]. Comm Partial Differential Equations, 2012, 37(3):447-478. [12] YAGDJIAN K. Global existence of the scalar field in de Sitter spacetime[J]. J Math Anal Appl, 2012, 396(1):323-344. [13] YAGDJIAN K. Integral transform approach to solving Klein-Gordon equation with variable coefficients[J]. Math Nachr, 2015, 288(17/18):2129-2152. [14] GALSTIAN A, YAGDJIAN K. Global solutions for semilinear Klein-Gordon equations in FLRW spacetimes[J]. Nonlinear Anal, 2015, 113:339-356. [15] EBERT M R, REISSIG M. Regularity theory and global existence of small data solutions to semi-linear de Sitter models with power non-linearity[J]. Nonlinear Anal Real World Appl, 2018, 40:14-54. [16] PALMIERI A, REISSIG M. A competition between Fujita and Strauss type exponents for blow-up of semi-linear wave equations with scale-invariant damping and mass[J]. J Differential Equations, 2019, 266(2/3):1176-1220. [17] LI Daqian, ZHOU Yi. Breakdown of solutions to □u+ut=|u|1+α[J]. Discrete Contin Dyn Syst, 1995, 1(4):503-502. |
[1] | 董莉. 两类非线性波动方程解的爆破时间的下确界[J]. 山东大学学报(理学版), 2017, 52(4): 56-60. |
[2] | 刘洋,达朝究,李富明. Nehari流形在一类半线性抛物方程爆破中的应用[J]. 山东大学学报(理学版), 2016, 51(1): 123-127. |
[3] | 吕红杰, 刘静静, 齐静, 刘硕. 弱耗散μ-Hunter-Saxton方程的爆破[J]. 山东大学学报(理学版), 2015, 50(05): 55-59. |
[4] | 林春进1,徐国静2. 高维Kaniadakis-Quarati 方程的有限时间爆破[J]. 山东大学学报(理学版), 2014, 49(06): 79-84. |
[5] | 张亚东1,李新祥2,石东洋3. 强阻尼波动方程的非协调有限元超收敛分析[J]. 山东大学学报(理学版), 2014, 49(05): 28-35. |
[6] | 宋丹丹,原保全*. 可压缩磁流体方程组的显式爆破解[J]. J4, 2012, 47(2): 26-30. |
[7] | 代丽美. 完全非线性一致椭圆方程的边界爆破问题[J]. J4, 2011, 46(6): 34-36. |
[8] | 阎小丽,原保全*. 欧拉方程的显式爆破解[J]. J4, 2011, 46(12): 104-107. |
[9] | 李凤萍. 三维广义磁流体方程组解的爆破准则[J]. J4, 2010, 45(4): 90-94. |
[10] | 陆求赐1,曾有栋2. 非局部波动方程组解的半无界问题[J]. J4, 2010, 45(10): 104-108. |
[11] | 田 敏,羊丹平 . 波动方程的重叠型区域分解并行有限差分算法[J]. J4, 2007, 42(2): 28-38 . |
|