您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (2): 96-104.doi: 10.6040/j.issn.1671-9352.0.2024.021

• • 上一篇    

删失分位数回归模型中的多变点估计

李学文1,冯可馨2,王小刚2*   

  1. 1.北方民族大学商学院, 宁夏 银川 750021;2.北方民族大学数学与信息科学学院, 宁夏 银川 750021
  • 发布日期:2025-02-14
  • 通讯作者: 王小刚(1980— ),男,教授,博士,研究方向为复杂数据统计推断、风险管理. E-mail:wangxg9102@163.com
  • 作者简介:李学文(1980— ),女,讲师,博士,研究方向为风险管理. E-mail:421630014@qq.com
  • 基金资助:
    宁夏自然科学基金重点项目(2023AAC02043);全国统计科学研究项目(2023LY070);宁夏高等教育一流学科建设基金资助项目(NXYLXK2017B09)

Estimation of multiple change points for censored quantile regression model

LI Xuewen1, FENG Kexin2, WANG Xiaogang2*   

  1. 1. School of Business, North Minzu University, Yinchuan 750021, Ningxia, China;
    2. School of Mathematics and Information Science, North Minzu University, Yinchuan 750021, Ningxia, China
  • Published:2025-02-14

摘要: 针对删失分位数回归模型中的变点个数、位置及模型参数同时估计问题,基于线性化技术得到参数的有效估计,消除目标函数不可导与非凸的困难。 该方法能捕捉响应变量受到某一协变量的影响而存在的多个变点,能更好理解复杂非线性关系的同时保持较快的收敛速度,兼顾灵活性与可解释性。 数值模拟验证估计方法在不同分位点、同(异)方差情形下具备有效性和稳健性,实证分析发现存在2个变点,并对其进行解释。

关键词: 多变点估计, 删失数据, 分位数回归模型, 线性化技术

Abstract: To simultaneously estimate the number of change points, the location of change points and the model parameters in censored quantile regression model, a linearization technique is employed to obtain estimators for above parameters. This approach overcomes the issues of non-differentiability and non-convexity objective function at the change points. It is capable of capturing the relationship between response and covariate of interest that changes across multiple change points. Furthermore, the proposed estimators strike a balance between flexibility and interpretability, making them become a useful tool for identifying and explaining change points. Simulation studies show that the estimators demonstrate robustness in both homoscedastic and heteroscedastic conditions across various quantile levels. An empirical analysis reveals the existence of two change points and their change point effects.

Key words: estimation multiple change point, censored data, quantile regression model, linearization technique

中图分类号: 

  • O212.2
[1] KOENKER R, BASSETT G. Regression quantiles[J]. Econometrica, 1978, 46(1):211-244.
[2] POWELL J L. Least absolute deviations estimation for the censored regression model[J]. Journal of Econometrics, 1984, 23(3):303-325.
[3] POWELL J L. Censored regression quantiles[J]. Journal of Econometrics, 1986, 32(1):143-155.
[4] PORTNOY S. Censored quantile regression[J]. Journal of American Statistical Association, 2003, 98(464):1001-1012.
[5] FRUMENTO P, BOTTAI M. An estimating equation for censored and truncated quantile regression[J]. Computational Statistics and Data Analysis, 2016, 113:53-63.
[6] CHEN Songnian. Sequential estimation of censored quantile regression models[J]. Journal of Econometrics, 2018, 207(1):30-52.
[7] JIA Y C, JEONG J H. Deep learning for quantile regression under right censoring: DeepQuantreg[J]. Computational Statistics and Data Analysis, 2022, 165:107323.
[8] NARISETTY N,KOENKER R. Censored quantile regression survival models with a cure proportion[J]. Journal of Econome-trics, 2022, 261(1):192-203.
[9] ZHANG Feipeng, LI Qunhua. A continuous threshold expectile model[J]. Computational Statistics and Data Analysis, 2017, 116:49-66.
[10] WANG Xiaogang, ZHOU Xiaoying, LI Bing, et al. A bent line Tobit regression model with application to household financial assets[J]. Journal of Statistical Planning and Inference, 2022, 221:69-80.
[11] ZHOU Xiaoying, ZHANG Feipeng. Bent line quantile regression via a smoothing technique[J]. Statistical Analysis and Data Mining, 2020, 13(3):216-228.
[12] 王小刚,李冰. 基于核函数方法的逐段线性Tobit回归模型估计[J]. 山东大学学报(理学版),2020,55(6):1-9. WANG Xiaogang, LI Bing. Piecewise linear Tobit regression model estimation based on kernel function method[J]. Journal of Shandong University(Natural Science), 2020, 55(6):1-9.
[13] MUGGEO V M R. Estimating regression models with unknown break-points[J]. Statistics in Medicine, 2003, 22(19):3055-3071.
[14] YAN Yanyang, ZHANG Feipeng, ZHOU Xiaoying. A note on estimating the bent line quantile regression model[J]. Computational Statistics, 2017, 32(2):661-630.
[15] MUGGEO V M R, ADELFIO G. Efficient change point detection for genomic sequences of continuous measurements[J]. Bioinformatics, 2011, 27(2):161-166.
[16] 龙振环,张飞鹏,周小英. 带多个变点的逐段连续线性分位数回归模型及应用[J]. 数量经济技术经济研究,2017,34(8):150-161. LONG Zhenhuan, ZHANG Feipeng, ZHOU Xiaoying. A continuous piecewise linear quantile regression with multiple change points[J]. The Journal of Quantitative and Technical Economics, 2017, 34(8):150-161.
[17] ZHONG Wei, WAN Chuang, ZHANG Wenyang. Estimation and inference for multi-kink quantile regression[J]. Journal of Business and Economic Statistics, 2021, 40(3):1123-1139.
[18] 王小刚,李冰. 含多个结构突变的分段线性Tobit回归模型及应用[J]. 统计与决策,2021,37(19):21-25. WANG Xiaogang, LI Bing. Piecewise linear Tobit regression model with multiple change points and application[J]. Statistics and Decision, 2021, 37(19):21-25.
[19] 曾毅,沈可. 中国老年人口多维度健康状况分析[J]. 中华预防医学,2010,34(2):108-114. ZENG Yi, SHEN Ke. Main dimensions of health status among the Chinese elderly[J]. Chinese Journal of Preventive Medicine, 2010, 34(2):108-114.
[1] 王淑影,张亚男,程云飞,周丽芳. 带治愈组右删失数据的模型平均研究[J]. 《山东大学学报(理学版)》, 2024, 59(4): 108-116.
[2] 王小刚,冯可馨. 分段线性删失分位数回归模型的变点估计[J]. 《山东大学学报(理学版)》, 2023, 58(11): 35-44.
[3] 隋云云,胡江山,马树才,付云鹏. 截断删失数据下线性指数分布的参数估计[J]. 《山东大学学报(理学版)》, 2020, 55(6): 10-16.
[4] 叶彩园,吴群英*,伍欣叶. 删失数据下NA样本核密度估计的相合性[J]. J4, 2013, 48(09): 40-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!