您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (10): 173-180.doi: 10.6040/j.issn.1671-9352.0.2025.105

• • 上一篇    

低分子量超分子-聚合物双网络低共熔凝胶的构建、机理及应变传感应用

杨俊康,王龙飞,宋梓玉,张涛,武文娜*   

  1. 烟台大学化学化工学院, 山东 烟台 264005
  • 发布日期:2025-10-17
  • 通讯作者: 武文娜(1993— ),女,讲师,硕士生导师,博士,研究方向为胶体与界面化学. E-mail:wuwenna@ytu.edu.cn
  • 作者简介:杨俊康(2001— ),女,硕士研究生,研究方向为胶体与界面化学. E-mail:junkangl@s.ytu.edu.cn*通信作者:武文娜(1993— ),女,讲师,硕士生导师,博士,研究方向为胶体与界面化学. E-mail:wuwenna@ytu.edu.cn
  • 基金资助:
    国家自然科学基金青年项目(22302167);山东省自然科学基金青年项目(ZR2023QB166);山东省青年科技人才托举工程(SDAST2024QTA065)

Construction, mechanism and strain sensing application of low-molecular-weight supramolecular-polymer double-network eutectogels

YANG Junkang, WANG Longfei, SONG Ziyu, ZHANG Tao, WU Wenna*   

  1. School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China
  • Published:2025-10-17

摘要: 低共熔凝胶作为一种替代传统温度不耐受型水凝胶和昂贵的离子液体凝胶的新型材料,在构建柔性电子器件方面引起了极大的关注。目前通过聚合物交联或低分子量胶凝剂制备的低共熔凝胶存在拉伸性有限和电导率低的问题。在此,本文利用构建双网络体系的策略成功制备一种超分子-聚合物双网络(SP-DN)低共熔凝胶,即将一种低分子量的超分子网络(牛磺脱氧胆酸钠,NaTDC)引入低共熔凝胶的共价聚合物网络(丙烯酸羟乙酯,HEA)中。由于超分子-聚合物双网络独特的能量耗散机制,大幅度提升凝胶的拉伸性能。在最佳的制备条件下,双网络凝胶的断裂伸长率高达650%,断裂拉伸强度为0.37 MPa。借助于超分子凝胶剂和低共熔溶剂(deep eutectic solvent, DES)的优势,凝胶在宽温度范围(60~100 ℃)内具有优异的电导率,在不同应变范围内表现出较高的传感灵敏度(gauge factor, GF=0.01)和稳定性,有望进一步应用于可穿戴应变传感器。该设计策略为开发其他新型柔性导电材料提供参考。

关键词: 超分子, 双网络, 低共熔凝胶, 应变传感

Abstract: Eutectogels as a novel material that can replace traditional temperature-sensitive hydrogels and expensive ionic liquid gels, have attracted significant attention in the construction of flexible electronic devices. Currently, eutectogels prepared by polymer crosslinking or low-molecular-weight gelators suffer from the limited stretchability and low conductivity. Herein, we successfully constructed a supramolecular-polymer double-network(SP-DN)eutectogel by introducing a low-molecular-weight supramolecular network(sodium taurodeoxycholate, NaTDC)into the covalent polymer network(2-hydroxyethyl acrylate, HEA). Due to the unique energy dissipation mechanism of the supramolecular-polymer double network, the tensile performance of the eutectogel was significantly enhanced. Under the optimal preparation conditions, the double-network eutectogel exhibited a fracture elongation of up to 650% and a fracture tensile strength of 0.37 MPa. Benefiting from the advantages of the supramolecular gelator and DES(deep eutectic solvent), the eutectogel exhibited excellent conductivity over a wide temperature range(60-100 ℃), and showed high sensing sensitivity(gauge factor, GF=0.01)and stability within different strain ranges. They are expected to be further applied in wearable strain sensors. This design strategy provides a reference for the development of other novel flexible conductive materials.

Key words: supramolecular, double network, eutectogel, strain sensing

中图分类号: 

  • O648
[1] XIONG X Y, LIANG J, WU W. Principle and recent progress of triboelectric pressure sensors for wearable applications[J]. Nano Energy, 2023, 113:108542.
[2] DAI Z Y, LEI M, DING S, et al. Durable superhydrophobic surface in wearable sensors: from nature to application[J]. Exploration, 2024, 4(2):20230046.
[3] DUAN S S, WEI X, ZHAO F Z, et al. Bioinspired youngs modulus-hierarchical e-skin with decoupling multimodality and neuromorphic encoding outputs to biosystems[J]. Advanced Science, 2023, 10(31):2304121.
[4] CHEN Y F, GAO Z Q, ZHANG F J, et al. Recent progress in self-powered multifunctional e-skin for advanced applications[J]. Exploration, 2022, 2(1):20210112.
[5] YUAN H, WANG M T, ZHANG J Q, et al. Hydrogels from chrome shavings for a highly sensitive capacitive pressure sensor[J]. Journal of Materials Chemistry A, 2024, 12(16):9797-9805.
[6] GAO L B, WANG M, WANG W D, et al. Highly sensitive pseudocapacitive iontronic pressure sensor with broad sensing range[J]. Nano-Micro Letters, 2021, 13(1):1-14.
[7] SUN Z Y, OU Q D, DONG C, et al. Conducting polymer hydrogels based on supramolecular strategies for wearable sensors[J]. Exploration, 2024, 4(5):20220167.
[8] WU W N, ZHANG X, XU W L, et al. Lithium-ion-doped eutectogel for surface-capacitive sensing touch panel[J]. ACS Applied Materials & Interfaces, 2024, 16(22):29248-29256.
[9] SUN M M, LIU X H, ZHANG T, et al. Hydrophobic ionic conductive elastomer with heterogeneous structure for underwater shock-resistant sensing[J]. ACS Applied Polymer Materials, 2024, 6(22):13594-13604.
[10] JOOS B, VOLDERS J, DA CRUZ R R, et al. Polymeric backbone eutectogels as a new generation of hybrid solid-state electrolytes[J]. Chemistry of Materials, 2020, 32(9):3783-3793.
[11] JAUMAUX P, LIU Q, ZHOU D, et al. Deep-eutectic-solvent-based self-healing polymer electrolyte for safe and long-life lithium-metal batteries[J]. Angewandte Chemie International Edition, 2020, 59(23):9134-9142.
[12] RUIZ-OLLES J, SLAVIK P, WHITELAW N K, et al. Self-assembled gels formed in deep eutectic solvents: supramolecular eutectogels with high ionic conductivity[J]. Angewandte Chemie International Edition, 2019, 58(13):4173-4178.
[13] GONG J P, KATSUYAMA Y, KUROKAWA T, et al. Double-network hydrogels with extremely high mechanical strength[J]. Advanced Materials, 2003, 15(14):1155-1158.
[14] CHEN H, LIU Y L, REN B P, et al. Super bulk and interfacial toughness of physically crosslinked double-network hydrogels[J]. Advanced Functional Materials, 2017, 27(44):1703086.
[15] ZHANG W L, LIU X, WANG J K, et al. Fatigue of double-network hydrogels[J]. Engineering Fracture Mechanics, 2018, 187:74-93.
[16] ZHANG F, XIONG L G, AI Y J, et al. Stretchable multiresponsive hydrogel with actuatable, shape memory, and self-healing properties[J]. Advanced Science, 2018, 5(8):1800450.
[17] SÁNCHEZ-TÉLLEZ D A, TÉLLEZ-JURADO L, RODRÍGUEZ-LORENZO L M. Hydrogels for cartilage regeneration, from polysaccharides to hybrids[J]. Polymers, 2017, 9(12):671.
[18] CHEN Q, ZHU L, CHEN H, et al. A novel design strategy for fully physically linked double network hydrogels with tough, fatigue resistant, and self-healing properties[J]. Advanced Functional Materials, 2015, 25(10):1598-1607.
[19] LI X Y, LI Q T, LEI N N, et al. Luminescent sodium deoxycholate ionogel induced by Eu3+ in ethylammonium nitrate[J]. ACS Omega, 2019, 4(1):2437-2444.
[20] QIAO Y, LIN Y Y, WANG Y J, et al. Metal-driven hierarchical self-assembled one-dimensional nanohelices[J]. Nano Letters, 2009, 9(12):4500-4504.
[21] WANG Y T, XIN X, LI W Z, et al. Studies on the gel behavior and luminescence properties of biological surfactant sodium deoxycholate/rare-earth salts mixed systems[J]. Journal of Colloid and Interface Science, 2014, 431:82-89.
[1] 燕祥睿,赵榕榕,方园园,董瑞,赵增典,宋沙沙. 抗冻水凝胶柔性应变传感器应用于人体运动监测[J]. 《山东大学学报(理学版)》, 2025, 60(10): 163-172.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!