《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (10): 173-180.doi: 10.6040/j.issn.1671-9352.0.2025.105
• • 上一篇
杨俊康,王龙飞,宋梓玉,张涛,武文娜*
YANG Junkang, WANG Longfei, SONG Ziyu, ZHANG Tao, WU Wenna*
摘要: 低共熔凝胶作为一种替代传统温度不耐受型水凝胶和昂贵的离子液体凝胶的新型材料,在构建柔性电子器件方面引起了极大的关注。目前通过聚合物交联或低分子量胶凝剂制备的低共熔凝胶存在拉伸性有限和电导率低的问题。在此,本文利用构建双网络体系的策略成功制备一种超分子-聚合物双网络(SP-DN)低共熔凝胶,即将一种低分子量的超分子网络(牛磺脱氧胆酸钠,NaTDC)引入低共熔凝胶的共价聚合物网络(丙烯酸羟乙酯,HEA)中。由于超分子-聚合物双网络独特的能量耗散机制,大幅度提升凝胶的拉伸性能。在最佳的制备条件下,双网络凝胶的断裂伸长率高达650%,断裂拉伸强度为0.37 MPa。借助于超分子凝胶剂和低共熔溶剂(deep eutectic solvent, DES)的优势,凝胶在宽温度范围(60~100 ℃)内具有优异的电导率,在不同应变范围内表现出较高的传感灵敏度(gauge factor, GF=0.01)和稳定性,有望进一步应用于可穿戴应变传感器。该设计策略为开发其他新型柔性导电材料提供参考。
中图分类号:
[1] XIONG X Y, LIANG J, WU W. Principle and recent progress of triboelectric pressure sensors for wearable applications[J]. Nano Energy, 2023, 113:108542. [2] DAI Z Y, LEI M, DING S, et al. Durable superhydrophobic surface in wearable sensors: from nature to application[J]. Exploration, 2024, 4(2):20230046. [3] DUAN S S, WEI X, ZHAO F Z, et al. Bioinspired youngs modulus-hierarchical e-skin with decoupling multimodality and neuromorphic encoding outputs to biosystems[J]. Advanced Science, 2023, 10(31):2304121. [4] CHEN Y F, GAO Z Q, ZHANG F J, et al. Recent progress in self-powered multifunctional e-skin for advanced applications[J]. Exploration, 2022, 2(1):20210112. [5] YUAN H, WANG M T, ZHANG J Q, et al. Hydrogels from chrome shavings for a highly sensitive capacitive pressure sensor[J]. Journal of Materials Chemistry A, 2024, 12(16):9797-9805. [6] GAO L B, WANG M, WANG W D, et al. Highly sensitive pseudocapacitive iontronic pressure sensor with broad sensing range[J]. Nano-Micro Letters, 2021, 13(1):1-14. [7] SUN Z Y, OU Q D, DONG C, et al. Conducting polymer hydrogels based on supramolecular strategies for wearable sensors[J]. Exploration, 2024, 4(5):20220167. [8] WU W N, ZHANG X, XU W L, et al. Lithium-ion-doped eutectogel for surface-capacitive sensing touch panel[J]. ACS Applied Materials & Interfaces, 2024, 16(22):29248-29256. [9] SUN M M, LIU X H, ZHANG T, et al. Hydrophobic ionic conductive elastomer with heterogeneous structure for underwater shock-resistant sensing[J]. ACS Applied Polymer Materials, 2024, 6(22):13594-13604. [10] JOOS B, VOLDERS J, DA CRUZ R R, et al. Polymeric backbone eutectogels as a new generation of hybrid solid-state electrolytes[J]. Chemistry of Materials, 2020, 32(9):3783-3793. [11] JAUMAUX P, LIU Q, ZHOU D, et al. Deep-eutectic-solvent-based self-healing polymer electrolyte for safe and long-life lithium-metal batteries[J]. Angewandte Chemie International Edition, 2020, 59(23):9134-9142. [12] RUIZ-OLLES J, SLAVIK P, WHITELAW N K, et al. Self-assembled gels formed in deep eutectic solvents: supramolecular eutectogels with high ionic conductivity[J]. Angewandte Chemie International Edition, 2019, 58(13):4173-4178. [13] GONG J P, KATSUYAMA Y, KUROKAWA T, et al. Double-network hydrogels with extremely high mechanical strength[J]. Advanced Materials, 2003, 15(14):1155-1158. [14] CHEN H, LIU Y L, REN B P, et al. Super bulk and interfacial toughness of physically crosslinked double-network hydrogels[J]. Advanced Functional Materials, 2017, 27(44):1703086. [15] ZHANG W L, LIU X, WANG J K, et al. Fatigue of double-network hydrogels[J]. Engineering Fracture Mechanics, 2018, 187:74-93. [16] ZHANG F, XIONG L G, AI Y J, et al. Stretchable multiresponsive hydrogel with actuatable, shape memory, and self-healing properties[J]. Advanced Science, 2018, 5(8):1800450. [17] SÁNCHEZ-TÉLLEZ D A, TÉLLEZ-JURADO L, RODRÍGUEZ-LORENZO L M. Hydrogels for cartilage regeneration, from polysaccharides to hybrids[J]. Polymers, 2017, 9(12):671. [18] CHEN Q, ZHU L, CHEN H, et al. A novel design strategy for fully physically linked double network hydrogels with tough, fatigue resistant, and self-healing properties[J]. Advanced Functional Materials, 2015, 25(10):1598-1607. [19] LI X Y, LI Q T, LEI N N, et al. Luminescent sodium deoxycholate ionogel induced by Eu3+ in ethylammonium nitrate[J]. ACS Omega, 2019, 4(1):2437-2444. [20] QIAO Y, LIN Y Y, WANG Y J, et al. Metal-driven hierarchical self-assembled one-dimensional nanohelices[J]. Nano Letters, 2009, 9(12):4500-4504. [21] WANG Y T, XIN X, LI W Z, et al. Studies on the gel behavior and luminescence properties of biological surfactant sodium deoxycholate/rare-earth salts mixed systems[J]. Journal of Colloid and Interface Science, 2014, 431:82-89. |
[1] | 燕祥睿,赵榕榕,方园园,董瑞,赵增典,宋沙沙. 抗冻水凝胶柔性应变传感器应用于人体运动监测[J]. 《山东大学学报(理学版)》, 2025, 60(10): 163-172. |
|