您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (10): 163-172.doi: 10.6040/j.issn.1671-9352.0.2025.114

• • 上一篇    

抗冻水凝胶柔性应变传感器应用于人体运动监测

燕祥睿,赵榕榕,方园园,董瑞,赵增典,宋沙沙*   

  1. 山东理工大学化学化工学院, 山东 淄博 255000
  • 发布日期:2025-10-17
  • 通讯作者: 宋沙沙(1986— ),女,副教授,博士,研究方向为胶体与界面化学. E-mail:songshasha@sdut.edu.cn
  • 作者简介:燕祥睿(1999— ),女,博士研究生,研究方向为多功能水凝胶材料. E-mail:yanxiangrui9@sohu.com*通信作者:宋沙沙(1986— ),女,副教授,博士,研究方向为胶体与界面化学. E-mail:songshasha@sdut.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(22172092);山东省自然科学基金面上项目(ZR2021MB079)

Anti-freezing hydrogel flexible strain sensor for human motion detection

YAN Xiangrui, ZHAO Rongrong, FANG Yuanyuan, DONG Rui, ZHAO Zengdian, SONG Shasha*   

  1. School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, Shandong, China
  • Published:2025-10-17

摘要: 导电水凝胶因具有皮肤般的弹性、离子导电性和机械柔韧性成为制备柔性传感器的理想材料。然而,水凝胶中含有大量的水分,在低温下容易结冰,使得凝胶变得硬且脆,进而失去导电性和机械柔性,严重影响了水凝胶柔性传感器在特殊环境中的应用。受自然界中生物体抗冻性的启发,本文将4-丙烯酰吗啉(ACMO)和2-丙烯酰氨基-2-甲基-1-丙烷磺酸(AMPS)单体与胶原蛋白在植酸的水溶液中聚合得到了低温抗冻的多功能导电水凝胶。由于水凝胶网络中P(ACMO-co-AMPS)链段与胶原蛋白及植酸之间动态可逆的非共价键相互作用,水凝胶具有优异的机械柔韧性、抗疲劳性和粘附性能。基于水凝胶的高电导率和对应变的快速响应性,将其组装成了高灵敏和宽响应范围的应变传感器,实现对人体关节和肌肉运动信号的实时监测。此外,植酸与水分子之间的强氢键作用,极大的降低了水的凝固点,赋予了水凝胶传感器良好的低温抗冻性能,能够满足寒冷条件下的运动监测需求。本文为开发多功能抗冻水凝胶柔性应变传感器提供了新策略,拓宽了水凝胶传感器的应用范围。

关键词: 水凝胶, 抗冻, 植酸, 柔性应变传感器, 运动监测

Abstract: Conductive hydrogel have emerged as a promising candidate for the development of flexible sensors due to their highly compatible elastic modulus with human skin, distinct ionic conductivity, and mechanical flexibility. However, the high water content within hydrogels inevitably freeze at subzero temperature, causing a degradation or loss of functionality, which severely prevent their practical application. Herein, inspired by the antifreeze properties of natural organisms, an anti-freezing conductive hydrogel was fabricated by compositing and cross-linking multifunctional monomers(ACMO and AMPS)in phytic acid(PA)solution in the presence of collagen. The well-balanced combination of P(ACMO-co-AMPS)and collagen, along with dynamically revisable noncovalent interactions inside the hydrogel network, lead to significant enhancements in interfacial toughness, fatigue resistance, and self-adhesion. Profiting from the high conductivity and rapid response to strain, the hydrogel was assembled as strain sensor to precisely detect human activities with high strain sensitivity and wide strain range. Moreover, the strong hydrogen bonds between PA and water greatly reduced the freezing point of water, endowing hydrogel sensor with excellent frost resistance and allowing real-time detection human motion under extreme conditions. This research provides a general and scalable strategy for the development of anti-freezing conductive hydrogel flexible strain sensor to satisfy diverse wearable requirements.

Key words: hydrogel, anti-freezing, phytic acid, flexible strain sensor, motion detection

中图分类号: 

  • O648
[1] ZHAO C Z, PARK J, ROOT S E, et al. Skin-inspired soft bioelectronic materials, devices and systems[J]. Nature Reviews Bioengineering, 2024, 2(8):671-690.
[2] WON D, KIM H, KIM J, et al. Laser-induced wet stability and adhesion of pure conducting polymer hydrogels[J]. Nature Electronics, 2024, 7(6):475-486.
[3] YANG R X, TU Z T, CHEN X Y, et al. Highly stretchable, robust, sensitive and wearable strain sensors based on mesh-structured conductive hydrogels[J]. Chemical Engineering Journal, 2024, 480:148228.
[4] LUO G X, XIE J Q, LIU J L, et al. Highly conductive, stretchable, durable, breathable electrodes based on electrospun polyurethane mats superficially decorated with carbon nanotubes for multifunctional wearable electronics[J]. Chemical Engineering Journal, 2023, 451:138549.
[5] TANG H, LI Y F, LIAO S F, et al. Multifunctional conductive hydrogel interface for bioelectronic recording and stimulation[J]. Advanced Healthcare Materials, 2024, 13(22):2400562.
[6] LI P Y, SUN W X, LI J L, et al. N-type semiconducting hydrogel[J]. Science, 2024, 384(6695):557-563.
[7] WON D, BANG J, CHOI S H, et al. Transparent electronics for wearable electronics application[J]. Chemical Reviews, 2023, 123(16):9982-10078.
[8] GHOSH A, PANDIT S, KUMAR S, et al. Designing dynamic metal-coordinated hydrophobically associated mechanically robust and stretchable hydrogels for versatile, multifunctional applications in strain sensing, actuation and flexible supercapacitors[J]. Chemical Engineering Journal, 2023, 475:146160.
[9] LIU C L, ZENG B X, JIANG L, et al. Tough and self-healable double-network hydrogel for environmentally resistant all-in-one supercapacitors and strain sensors[J]. Chemical Engineering Journal, 2023, 460:141787.
[10] WANG G, LIU M, ZHANG C, et al. Amylopectin-assisted hydrogel conductors for multi-modal physiological signal acquisition[J]. European Polymer Journal, 2024, 207:112843.
[11] TAO X Y, ZHU K H, CHEN H M, et al. Recyclable, anti-freezing and anti-drying silk fibroin-based hydrogels for ultrasensitive strain sensors and all-hydrogel-state super-capacitors[J]. Materials Today Chemistry, 2023, 32:101624.
[12] WANG Z Y, ZOU X J, YANG Z W, et al. Highly sensitive temperature detection based on a frost-and dehydration-resistive ion-doped hydrogel-MXene composite[J]. ACS Applied Materials & Interfaces, 2023, 15(29):35525-35533.
[13] HE L, WANG J Q, WENG S, et al. A high-strength, environmentally stable, and recyclable starch/PVA organohydrogel electrolyte for flexible all-solid-state supercapacitor[J]. Carbohydrate Polymers, 2023, 306:120587.
[14] SHI X J, XU L L, XU Q L, et al. Ultrasoft conducting polymer hydrogels with large biaxial strain and conformal adhesion for sensitive flexible sensors[J]. Chemistry of Materials, 2024, 36(21):10560-10570.
[15] REN H, ZHANG Z, CHENG X L, et al. Injectable, self-healing hydrogel adhesives with firm tissue adhesion and on-demand biodegradation for sutureless wound closure[J]. Science Advances, 2023, 9(33):eadh4327.
[16] GAO J L, LI X M, XU L N, et al. Transparent multifunctional cellulose-based conductive hydrogel for wearable strain sensors and arrays[J]. Carbohydrate Polymers, 2024, 329:121784.
[17] WANG J, DU P, HSU Y I, et al. Rapid preparation of dynamic-crosslinked nanocomposite hydrogel sensors with efficiency self-healing and adhesion properties for elderly health and sleep management[J]. Chemical Engineering Journal, 2024, 480:148324.
[18] WANG W Y, GUO P S, LIU X, et al. Fully polymeric conductive hydrogels with low hysteresis and high toughness as multi-responsive and self-powered wearable sensors[J]. Advanced Functional Materials, 2024, 34(32):2316346.
[1] 周松,宁华龙,陈相燕,冯玉娇,徐文龙. 自供电水凝胶传感器及其应用[J]. 《山东大学学报(理学版)》, 2025, 60(10): 79-104.
[2] 刘欣怡,李洁龄,王安河,李琦,白硕. 丝素蛋白增强的肽自组装水凝胶的制备及其在肿瘤类器官构建中的应用[J]. 《山东大学学报(理学版)》, 2025, 60(10): 117-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!