《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (7): 100-105.doi: 10.6040/j.issn.1671-9352.1.2018.104
• • 上一篇
李万理1,唐婧尧1,薛云1,2*,胡晓晖1,张涛3
LI Wan-li1, TANG Jing-yao1, XUE Yun1,2*, HU Xiao-hui1, ZHANG Tao3
摘要: 提出了一种基于点互信息的全局词向量训练模型。该模型为了避免GloVe词向量模型中使用条件概率刻画词语关系时所产生的缺点,使用了另一种相关信息——联合概率与边际概率乘积的比值——来刻画词语间的关系。为了验证模型的有效性,在相同条件下,利用GloVe模型和我们的模型训练词向量,然后使用这2种词向量分别进行了word analogy以及similarity的实验。实验表明,模型的准确率在word analogy的Semantic问题中比GloVe模型表现更好,分别在100维、200维、300维的词向量实验中,准确率提升了10.50%、4.43%、1.02%,而在similarity的实验中,模型准确率提升也达5%~6%。结果表明,模型可以更有效地捕捉词语的语义。
中图分类号:
[1] HINTON G E. Learning distributed representations of concepts[C] //Proceedings of the Eighth Annual Conference of the Cognitive Science Society. Amherst, Mass: Erlbaum, 1986:1-12. [2] BENGIO Y, DUCHARME R, VINCENT P, et al. A neural probabilistic language model[J]. Journal of Machine Learning Research, 2003, 3: 1137-1155. [3] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[J]. arXiv,2013, arXiv:1301.3781. [4] PENNINGTON J, SOCHER R, MANNING C. Glove: global vectors for word representation[C] //Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing(EMNLP). USA: ACL, 2014: 1532-1543. [5] DEERWESTER S, DUMAIS S T, FURNAS G W, et al. Indexing by latent semantic analysis[J]. Journal of the American Society for Information Science, 1990, 41(6): 391-407. [6] LEVY O, GOLDBERG Y. Neural word embedding as implicit matrix factorization[C] //Advances in Neural Information Processing Systems. USA: Curran Associates, Inc, 2014: 2177-2185. [7] LEVY O, GOLDBERG Y, DAGAN I. Improving distributional similarity with lessons learned from word embeddings[J]. Transactions of the Association for Computational Linguistics, 2015, 3(1): 211-225. [8] JAMEEL S, BOURAOUI Z, SCHOCKAERT S. Unsupervised learning of distributional relation vectors[C] //Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics(Long Papers).Melbourne: ACL, 2018:23-33. [9] ARORA S, LI Y, LIANG Y, et al. A latent variable model approach to pmi-based word embeddings[J]. Transactions of the Association for Computational Linguistics, 2016, 4(1): 385-399. [10] MORIN F, BENGIO Y. Hierarchical probabilistic neural network language model[C] //Proceedings of the 10th International Workshop on Artificial Intelligence and Statistics. Aistats. The Society for Artificial Intelligence and Statistics, 2005, 246-252. [11] HARRIS Z S. Distributional structure[J]. Word, 1954, 10(2/3): 146-162. |
[1] | 黄栋,徐博,许侃,林鸿飞,杨志豪. 基于词向量和EMD距离的短文本聚类[J]. 山东大学学报(理学版), 2017, 52(7): 66-72. |
[2] | 杜漫,徐学可,杜慧,伍大勇,刘悦,程学旗. 面向情绪分类的情绪词向量学习[J]. 山东大学学报(理学版), 2017, 52(7): 52-58. |
[3] | 姚亮,洪宇,刘昊,刘乐,姚建民. 基于语义分布相似度的翻译模型领域自适应研究[J]. 山东大学学报(理学版), 2016, 51(7): 43-50. |
[4] | 桑乐园, 徐新峰, 张婧, 黄德根. 基于广义Jaccard系数的微博情感新词判定[J]. 山东大学学报(理学版), 2015, 50(07): 71-75. |
[5] | 杨阳, 刘龙飞, 魏现辉, 林鸿飞. 基于词向量的情感新词发现方法[J]. 山东大学学报(理学版), 2014, 49(11): 51-58. |
|