《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (11): 35-45.doi: 10.6040/j.issn.1671-9352.1.2019.017
许侃(),刘瑞鑫,林鸿飞,刘海峰,冯娇娇,李家平,林原*(),徐博
Kan XU(),Rui-xin LIU,Hong-fei LIN,Hai-feng LIU,Jiao-jiao FENG,Jia-ping LI,Yuan LIN*(),Bo XU
摘要:
针对基于异质信息网络推荐中的有效信息提取与利用,提出了一种基于异质网络嵌入的学术论文推荐方法。使用由元路径引导的随机游走策略生成节点序列;对于每个元路径,通过最大化序列中相邻节点的共现概率来学习节点的唯一嵌入表示;设计了不同的融合函数,将节点在多个不同元路径的低维表示融合为异质信息网络的嵌入,并且引入注意力机制应用于推荐系统。该方法解决了大多数基于异质信息网络的推荐方法因依赖于基于路径的相似性而无法完全挖掘用户和项目潜在结构特征的问题,在DBLP数据集中验证了模型的有效性,并在RMSE指标中取得超过传统模型的效果。
中图分类号:
1 | 刘辉, 郭梦梦, 潘伟强. 个性化推荐系统综述[J]. 常州大学学报(自然科学版), 2017, 29 (3): 51- 59. |
LIU Hui , GUO Mengmeng , PAN Weiqiang . Overview of personalized recommendation systems[J]. Journal of Changzhou University(Natural Science Edition), 2017, 29 (3): 51- 59. | |
2 | SU Xiaoyuan, KHOSHGOFTAAR T M. A survey of collaborative filtering techniques[J]. Advances in Artificial Intelligence, 2009, http://dx.doi.org/10.1155/2009/421425. |
3 | 王雪蓓.基于协同过滤的个性化推荐[D].广州:华南理工大学, 2016. |
WANG Xuebei. The personalized recommendation based on collaborative filtering[D]. Guangzhou: South China University of Technology, 2016. | |
4 | YU Xiao, REN Xiang, GU Quanquan, et al. Collaborative filtering with entity similarity regularization in heterogeneous information networks[C/OL]. 2013, http://hanj.cs.illinois.edu/pdf/hina13_xyu.pdf. |
5 | YU Xiao, SUN Yizhou, NORICK B, et al. User guided entity similarity search using meta-path selection in heterogeneous information networks[C]//Proceedings of the 21st ACM International Conference on Information and Knowledge Management-CIKM2012, Maui: ACM, 2012: 2025-2029. |
6 |
SUN Yizhou , HAN Jiawei , YAN Xifeng , et al. PathSim: meta path-based top-K similarity search in heterogeneous information networks[J]. Proceedings of the VLDB Endowment, 2011, 4 (11): 992- 1003.
doi: 10.14778/3402707.3402736 |
7 | YU Xiao, REN Xiang, SUN Yizhou, et al. Personalized entity recommendation: a heterogeneous information network approach[C]//Proceedings of the 7th ACM International Conference on Web Search and Data Mining. New York: ACM, 2014: 283-292. |
8 | SHI Chuan, ZHANG Zhiqiang, LUO Ping, et al. Semantic path based personalized recommendation on weighted heterogeneous information networks[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. Melbourne: ACM, 2015: 453-462. |
9 |
SHI Chuan , HU Binbin , ZHAO Waynexin , et al. Heterogeneous information network embedding for recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 31 (2): 357- 370.
doi: 10.1109/TKDE.2018.2833443 |
10 | GOYAL P , FERRARA E . Graph embedding techniques, applications, and performance: a survey[J]. Knowledge-Based Systems, 2018, 151 (1): 78- 94. |
11 | PEROZZI B, AL-RFOU R, SKIENA S. Deepwalk: online learning of social representations[C]//Proceedings of 20th International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 701-710. |
12 | GROVER A, LESKOVEC J. Node2vec: scalable feature learning for networks[C]//Proceedings of the 22nd International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 855-864. |
13 | SALAKHUTDINOV R, MNIH A. Probabilistic matrix factorization[C]//International Conference on Neural Information Processing Systems. Vancouver: ACM, 2007: 1257-1264. |
14 | RENDLE S . Factorization machines with libFM[J]. ACM Transactions on Intelligent Systems and Technology, 2012, 3 (3): 1- 22. |
[1] | 谭红叶,要一璐,梁颖红. 基于知识脉络的科技论文推荐[J]. 山东大学学报(理学版), 2016, 51(5): 94-101. |
|