《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (11): 26-34.doi: 10.6040/j.issn.1671-9352.0.2019.141
• • 上一篇
钱鑫强,王开荣*
QIAN Xin-qiang, WANG Kai-rong*
摘要: 利用Clarke方向导数和Clarke次微分得到了非光滑多目标区间优化弱LU有效解的Fritz John最优必要条件。在广义不变凸性及函数正则性的假设下得到了KKT条件、充分性条件及相关对偶理论。利用了一些实例来验证理论的可行性,这些结论能够解决一般情形下多目标区间优化的相关问题。
中图分类号:
[1] WU H C. The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function[J]. European Journal of Operational Research, 2007, 176(1):46-59. [2] WU H C. Wolfe duality for interval-valued optimization[J]. Journal of Optimization Theory and Applications, 2008, 138(3):497-509. [3] WU H C. The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions[J]. European Journal of Operational Research, 2009, 196(1):49-60. [4] SUN Y H, WANG Laishen. Optimality conditions and duality in nondifferentiable interval-valued programming[J]. Journal of Industrial & Management Optimization, 2013, 9(1):131-142. [5] ANTCZAK T. Optimality conditions and duality results for nonsmooth vector optimization problems with the multiple interval-valued objective function[J]. Acta Mathematica Scientia, 2017, 37(4):1133-1150. [6] CHEN Xiuhong, LI Zhihua. On optimility conditions and duality for non-differentiable interval-valued programming problems with the generalized(F, ρ)convexity[J]. J Ind Mang Optim, 2018, 14(3):895-912. [7] JAYSWAL A, AHMAD I, BANERJEE J. Nonsmooth interval-valued optimization and saddle-point optimality criteria[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39(4):1391-1411. [8] CLARKE F H. Nonsmooth optimization[M]. New York: Wiley Interscience, 1983. |
[1] | 王海权,种鸽子. 两分量Novikov系统初值问题解的局部Gevrey正则性与解析性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 56-63. |
[2] | 徐秀娟,闫硕,朱叶青. 一类非齐次A-调和方程很弱解的全局正则性[J]. 《山东大学学报(理学版)》, 2020, 55(2): 48-56. |
[3] | 杜广伟. 具有次临界增长的椭圆障碍问题解的正则性[J]. 山东大学学报(理学版), 2018, 53(6): 57-63. |
[4] | 李小娟,高强. 次线性期望框架下乘积空间的正则性[J]. 山东大学学报(理学版), 2018, 53(4): 66-75. |
[5] | 代丽美. Hessian方程黏性解的正则性[J]. J4, 2010, 45(9): 62-64. |
|