您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (3): 89-97.doi: 10.6040/j.issn.1671-9352.1.2019.187

• • 上一篇    

不完备序信息系统下的局部双量化决策粗糙集研究

林艳丽,刘晓东*   

  1. 大连海事大学理学院, 辽宁 大连 116026
  • 发布日期:2020-03-27
  • 作者简介:林艳丽(1992— ),女,硕士研究生,研究方向为粒计算、数据处理、信息提取. E-mail: linyl@dlmu.edu.cn*通信作者简介:刘晓东(1963— ),男,教授,博士生导师,研究方向为代数环、模糊系统理论及其应用、模糊控制、机器学习、知识发现与表示. E-mail: xdliuros@dlut.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61803065);中央高校基本科研业务费专项基金资助项目(3132019175,3132019323);辽宁省社会科学规划基金资助项目(L18DGL010)

Research on local double relative quantitative decision-theoretic rough set for incomplete ordered information system

LIN Yan-li, LIU Xiao-dong*   

  1. College of Science, Dalian Maritime University, Dalian 116026, Liaoning, China
  • Published:2020-03-27

摘要: 针对不完备序信息系统,在双量化粗糙集和局部决策粗糙集的基础上,构建了2种局部双量化决策粗糙集(local double relative quantitative decision-theoretic rough set, LDrq-DTRS)模型,探讨了它们的正域、负域、边界域之间的包含关系,以及它们与局部粗糙集之间的内在联系。最后,通过数据实验比较验证了在不同模型参数关系下以上模型间的相关性质。

关键词: 局部决策粗糙集, 双量化, 特征优势关系, 不完备序信息系统

Abstract: This study focuses on the incomplete order information system based on the double relative quantitative rough set and the local decision-theoretic rough set. Two kinds of local double relative quantitative decision-theoretic rough set(LDrq-DTRS)models are established, and their inclusion relationships in terms of positive, negative and boundary regions are discussed. In addition, the inner relationship between LDrq-DTRS and local rough set is also examined. Finally, the related properties are verified by employing a numerical experiments under different parameters.

Key words: local decision-theoretic rough set, double relative quantitative, characteristic dominance relation, incomplete ordered information system

中图分类号: 

  • TP181
[1] PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982, 11(5):341-356.
[2] 余扬. 基于粗糙集理论的决策分析[J]. 统计与决策, 2005,(10):50-51. YU Yang. Decision analysis based on rough set theory[J]. Statistics and Decision, 2005,(10):50-51.
[3] 王宏. 基于粗糙集数据挖掘技术的客户价值分析[D]. 哈尔滨: 哈尔滨工程大学, 2006. WANG Hong. Customer value analysis based on rough set data mining technology[D]. Harbin: Harbin Engineering University, 2016.
[4] HUANG Guangbin, WANG Dianhui, LAN Yuan. Extreme learning machines: a survey[J]. International Journal of Machine Learning and Cybernetics, 2011, 2(2):107-122.
[5] LIU Yongli. Research on information technology with character pattern recognition method based on rough set theory[J]. Advanced Materials Research, 2014, 886:519-523.
[6] 王国胤. Rough集理论在不完备信息系统中的扩充[J]. 计算机研究与发展, 2002, 39(10):1238-1243. WANG Guoyin. Extension of rough set under incomplete information systems[J]. Journal of Computer Research and Development, 2002, 39(10):1238-1243.
[7] 王基一, 许黎明. 概率粗糙集模型[J]. 计算机科学, 2002, 29(8):76-78. WANG Jiyi, XU Liming. Probabilistic rough set models[J]. Computer Science, 2002, 29(8):76-78.
[8] FANG Bowen, HU Baoqing. Probabilistic graded rough set and double relative quantitative decision-theoretic rough set[J]. International Journal of Approximate Reasoning, 2016, 74(3):9-11.
[9] XU Weihua, GUO Yanting. Generalized multigranulation double-quantitative decision-theoretic rough set[J]. Knowledge-Based Systems, 2016, 105:190-205.
[10] 李敬, 王利东. 不完备信息系统中的广义多粒度双相对定量决策粗糙集[J]. 南京大学学报(自然科学版), 2017, 53(4):783-790. LI Jing, WANG Lidong. Generalized multigranulation double-relative-quantitative decision-theoretic rough sets in incomplete information system[J]. Journal of Nanjing University(Natural Science), 2017, 53(4):783-790.
[11] GRECO S, MATARAZZO B, SLOWINSKI R. Rough approximation of a preference relation by dominance relations[J]. European Journal of Operational Research, 1999, 117(1):63-83.
[12] DU Wensheng, HU Baoqing. Dominance-based rough set approach to incomplete ordered information systems[J]. Information Sciences, 2016, 346/347:106-129.
[13] QIAN Yuhua, LIANG Xinyan, WANG Qi, et al. Local rough set: a solution to rough data analysis in big data[J]. International Journal of Approximate Reasoning, 2018, 97:38-63.
[14] QIAN Yuhua, LIANG Xinyan, LIN Guoping, et al. Local multigranulation decision-theoretic rough sets[J]. International Journal of Approximate Reasoning, 2017, 82:119-137.
[15] ZHANG Jia, ZHANG Xiaoyan, XU Weihua, et al. Local multigranulation decision-theoretic rough set in ordered information systems[J]. Soft Computing, 2019, 23(24):13247-13261.
[16] 戴志聪. 不完备多粒度序决策系统的知识获取[D]. 舟山: 浙江海洋学院, 2016. DAI Zhicong. On knowledge acquisition in incomplete multi-scale ordered decision systems[D]. Zhoushan: Zhejiang Ocean University, 2016.
[17] LI Wentao, XU Weihua. Double-quantitative decision-theoretic rough set[J]. Information Sciences, 2015, 316:54-67.
[1] 卢政宇,李光松,申莹珠,张彬. 基于连续特征的未知协议消息聚类算法[J]. 《山东大学学报(理学版)》, 2019, 54(5): 37-43.
[2] 刘国涛,张燕平,徐晨初. 一种优化覆盖中心的三支决策模型[J]. 山东大学学报(理学版), 2017, 52(3): 105-110.
[3] 及歆荣,侯翠琴,侯义斌,赵斌. 基于筛选机制的L1核学习机分布式训练方法[J]. 山东大学学报(理学版), 2016, 51(9): 137-144.
[4] 吴修国 曾广周. 目标描述逻辑研究[J]. J4, 2009, 44(11): 68-74.
[5] 许传轲 陈月辉 赵亚欧. 基于改进伪氨基酸组成的蛋白质相互作用预测[J]. J4, 2009, 44(9): 17-21.
[6] 修明 陈保会 史开泉. F-粗规律与它的属性控制[J]. J4, 2008, 43(12): 66-72.
[7] 付海艳,卢昌荆,史开泉 . (F,F-)-规律推理与规律挖掘[J]. J4, 2007, 42(7): 54-57 .
[8] 张 凌,邱育峰,任雪芳 . 粗规律生成与它的分离[J]. J4, 2008, 43(3): 58-63 .
[9] 张 凌,邱育锋,任雪芳, . 基于单向S-粗集的知识堆垒与知识垛识别[J]. J4, 2008, 43(10): 12-17 .
[10] 付海艳,史开泉 . 知识过滤与属性f-迁移依赖[J]. J4, 2007, 42(10): 54-58 .
[11] 张聪, 于洪. 一种三支决策软增量聚类算法[J]. 山东大学学报(理学版), 2014, 49(08): 40-47.
[12] 翟俊海, 张垚, 王熙照. 相容粗糙模糊集模型[J]. 山东大学学报(理学版), 2014, 49(08): 73-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!