山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (3): 105-110.doi: 10.6040/j.issn.1671-9352.4.2016.216
• • 上一篇
刘国涛1,2,张燕平1,2,徐晨初1,2
LIU Guo-tao1,2, ZHANG Yan-ping1,2, XU Chen-chu1,2
摘要: 三支决策理论是传统二支决策上的拓展,具有三种决策规则,即接受、拒绝和不承诺。三支决策广泛适用于不确定或不完整信息的处理。基于覆盖算法的三支决策模型能够自动确定三个域,但是,传统覆盖算法的覆盖中心选取是个不可控的随机过程,单次实验的精度无法保证。因此,本文提出了一种优化覆盖算法中心的三支决策模型(optimal center in constructive covering algorithm, 简称OCCCA)。该模型结合最近均值思想,在获取覆盖中心时,先求取数据集同类样本的均值,然后选取与均值最近的样本作为覆盖中心,从而实现优化覆盖算法中心的三支决策模型。实验表明,OCCCA比传统覆盖算法在三支决策模型分类准确率上有平均5%的提高。
中图分类号:
[1] YAO Yiyu. Three-way decision: an interpretation of rules in rough set theory[M] //Rough Sets and Knowledge Technology. Berlin: Springer-Verlag, 2009, 5589:642-649. [2] YAO Yiyu. Three-way decisions with probabilistic rough sets[J]. Information Sciences, 2010, 180(3): 341-353. [3] ZHANG Y. Hierarchical covering algorithm[J].Tsinghua Science and Technology, 2014, 19(1):76-81. [4] PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982, 11(5): 341-356. [5] YAO Yiyu, WONG S K M. A decision theoretic framework for approximating concepts[J]. International Journal of Man-Machine Studies, 1992, 37(6): 793-809. [6] MIAO Duoqian, GAO Can, ZHANG Nan, et al. Diverse reduct subspaces based co-training for partially labeled data[J]. International Journal of Approximate Reasoning, 2011, 52(8): 1103-1117. [7] JIA Xiuyi, LI Weiwei, SHANG Lin, et al. An optimization viewpoint of decision-theoretic rough set model[M] //Rough Sets and Knowledge Technology. Berlin: Springer-Verlag, 2011: 457-465. [8] YAO Yiyu. The superiority of three-way decisions in probabilistic rough set models[J]. Information Sciences, 2011, 181(6): 1080-1096. [9] ZHANG Yanping, XING Hang, ZOU Huijin, et al. A three-way decisions model based on constructive covering algorithm[M] //Rough Sets and Knowledge Technology. Berlin: Springer-Verlag, 2013: 346-353. [10] ZHANG L, ZHANG B. A geometrical representation of mcculloch-pitts neural model and its applications[J]. IEEE Transactions on Neural Networks, 1999, 10(4): 925-929. [11] CHEN Jie, ZHAO Shu, ZHANG Yanping. A multi-view decision model based on CCA[M] //Rough Sets and Knowledge Technology. Berlin: Springer International Publishing, 2015: 266-274. [12] 刘盾, 李天瑞, 李华雄. 粗糙集理论:基于三支决策视角[J]. 南京大学学报(自然科学版),2013, 49(5):574-581. LIU Dun, LI Tianrui, LI Huaxiong. Rough set theory: a three-way decision perspective[J]. Journal of Nanjing University(Natural Sciences), 2013, 49(5):574-581. [13] 张铃, 张钹. M-P神经元模型的几何意义及其应用[J]. 软件学报, 1998, 9(5):334-338. ZHANG Ling, ZHANG Bo. The M-P neuron models geometrical significance and application[J]. Journal of Software, 1998, 9(5):334-338. [14] MCCULLOCH W S, PITTS W. A logical calculus of the ideas immanent in nervous activity[J]. The Bulletin of Mathematical Biophysics, 1943, 5(4): 115-133. [15] CHEN Jie, ZHANG Yanping, ZHAO Shu. Multi-granular mining for boundary regions in three-way decision theory[J]. Knowledge-Based Systems, 2016, 91: 287-292. [16] LIU Dun, YAO Yiyu, LI Tianrui. Three-way investment decisions with decision-theoretic rough sets[J]. International Journal of Computational Intelligence Systems, 2011, 4(1): 66-74. [17] 邢航. 基于构造性覆盖算法的三支决策模型[D]. 安徽:安徽大学, 2014. XING Hang. Three-way decisions model based on constructive covering algorithm[D]. Anhui: Anhui University, 2014. [18] 张燕平, 邹慧锦, 赵姝. 基于 CCA 的代价敏感三支决策模型[J]. 南京大学学报(自然科学版), 2015, 51(2):447-452. ZHANG Yanping, ZHOU Huijin, ZHAO Shu. Cost-sensitive three-way decisions model based on CCA[J]. Journal of Nanjing University(Natural Sciences), 2015, 51(2):447-452. [19] LINGRAS P, CHEN Min, MIAO Duoqian. Rough multi-category decision theoretic framework[M] //Rough Sets and Knowledge Technology. Berlin: Springer, 2008: 676-683. [20] 贾修一, 李伟湋, 商琳,等. 一种自适应求三枝决策中决策阈值的算法[J]. 电子学报, 2011, 39(11):2520-2525. JIA Xiuyi, LI Weiwei, SHANG Lin, et al. An adaptive learning parameters algorithm in three-way decision-throretic rough set model[J]. Acta Electronica Sinica, 2011, 39(11):2520-2525. [21] 贾修一, 商琳, 周献中,等. 三支决策理论与应用[M]. 南京:南京大学出版社, 2012. JIA Xiuyi, SHANG Lin, ZHOU Xianzhong, et al. Three-way Decision theory and application[M]. Nanjing: Nanjing University Press, 2012. [22] SHIN Donghyuk, KIM Saejoon. Nearest mean classification via one-class SVM[C] //2009 International Joint Conference on Computational Sciences and Optimization. IEEE, 2009: 593-596. [23] 牛晓太. 基于KNN算法和10折交叉验证法的支持向量选取算法[J]. 华中师范大学学报(自然科学版), 2014, 48(3):335-338. NIU Xiaotai. Support vector extracted algorithm based on KNN and 10 fold cross-validation method[J]. Journal of Huazhong Normal University(Natural Sciences), 2014, 48(3):335-338. [24] YAO Yiyu, GAO Cong. Statistical interpretations of three-way decisions[M] //Rough Sets and Knowledge Technology. Berlin: Springer-Verlag, 2015: 309-320. |
[1] | 田海龙, 朱艳辉, 梁韬, 马进, 刘璟. 基于三支决策的中文微博观点句识别研究[J]. 山东大学学报(理学版), 2014, 49(08): 58-65. |
[2] | 张里博, 李华雄, 周献中, 黄兵. 人脸识别中的多粒度代价敏感三支决策[J]. 山东大学学报(理学版), 2014, 49(08): 48-57. |
[3] | 杜丽娜, 徐久成, 刘洋洋, 孙林. 基于三支决策风险最小化的风险投资评估应用研究[J]. 山东大学学报(理学版), 2014, 49(08): 66-72. |
[4] | 张聪, 于洪. 一种三支决策软增量聚类算法[J]. 山东大学学报(理学版), 2014, 49(08): 40-47. |
|