您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2014, Vol. 49 ›› Issue (08): 48-57.doi: 10.6040/j.issn.1671-9352.1.2014.195

• 论文 • 上一篇    下一篇

人脸识别中的多粒度代价敏感三支决策

张里博1, 李华雄1, 周献中1, 黄兵2   

  1. 1. 南京大学工程管理学院, 江苏 南京 210093;
    2. 南京审计学院工学院, 江苏 南京 211815
  • 收稿日期:2014-06-02 修回日期:2014-07-08 发布日期:2014-09-24
  • 通讯作者: 李华雄(1977-),男,讲师,博士,研究方向为代价敏感学习、模式识别、数据挖掘等.E-mail:huaxiongli@nju.edu.cn E-mail:huaxiongli@nju.edu.cn
  • 作者简介:张里博(1989-),男,硕士研究生,研究方向为粗糙集、人脸识别等.E-mail:mg1315013@smail.nju.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(71201076,71171107,70971062,61170105,71201133);江苏省自然科学基金资助项目(BK2011564);高等学校博士学科点专项科研基金资助课题(20120091120004)

Multi-granularity cost-sensitive three-way decision for face recognition

ZHANG Li-bo1, LI Hua-xiong1, ZHOU Xian-zhong1, HUANG Bing2   

  1. 1. School of Management and Engineering, Nanjing University, Nanjing 210093, Jiangsu, China;
    2. School of Technology, Nanjing Audit University, Nanjing 211815, Jiangsu, China
  • Received:2014-06-02 Revised:2014-07-08 Published:2014-09-24

摘要: 探索了多粒度三支决策方法在人脸识别中的应用,提出了两种图像粒化方法以模拟不同粒度下的视觉效果,并由此得到不同粒度的人脸图像。之后,针对不同粒度图像,分别采用代价敏感三支决策方法求得相应粒度下的最小代价决策。最后,通过在ORL和PIE人脸数据库上的实验,验证了多粒度代价敏感三支决策在模拟人们决策方面的有效性。

关键词: 代价敏感, 人脸识别, 粒度, 三支决策

Abstract: The application of multi-granularity three-way decision method in face recognition are explored. Firstly, two representations of the image's granularity to simulate the visual effects of different granularities are presented, and acquire face images of different granularities accordingly. Then the cost-sensitive three-way decision model is introduced to decision-making to get the decision with the minimum cost. Finally, the experiment on the PIE and ORL data prove that multi-granularity cost-sensitive three-way decision is effective to simulate the decison process of human beings.

Key words: three-way decision, face recognition, granularity, cost-sensitive

中图分类号: 

  • TP18
[1] YAO Yiyu, WONG S. K. Michael. A decision theoretic framework for approximating concepts[J]. International Journal of Man-machine Studies, 1992, 37(6):793-809.
[2] DUDA Richard O, HART Peter E, STORK David G. Pattern classification[M]. Chichester: Wiley, 2001.
[3] YAO Yiyu. The superiority of three-way decisions in probabilistic rough set models[J]. Information Sciences, 2011, 181(6):1080-1096.
[4] YAO Yiyu. Three-Way Decision: An interpretation of rules in rough set theory[C]//Lecture Notes in Computer Science. New York: Springer, 2009:642-649.
[5] YAO Yiyu. Three-way decisions with probabilistic rough sets[J]. Information Sciences, 2010, 180(3): 341-353.
[6] ZHANG Yin, ZHOU Zhihua. Cost-sensitive face recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(10): 1758-1769.
[7] HERBERT Joseph P, YAO Jingtao. Game-theoretic risk analysis in decision-theoretic rough sets[M]//WANG Guoyin, LI Tianrui, Grzymala-Busse J W, et al. Rough Sets and Knowledge Technology. Berlin Heidelberg: Springer, 2008:132-139.
[8] LI Huaxiong, ZHOU Xianzhong, ZHAO Jiabao, et al. Cost-sensitive classification based on decision-theoretic rough set model[M].//LI Tianrui, NGUYEN Hung Son, WANG Guoyin, et al. Rough Sets and Knowledge Technology. Berlin Heidelberg: Springer, 2012:379-388.
[9] 李华雄,刘盾,周献中. 决策粗糙集模型研究综述[J]. 重庆邮电大学学报:自然科学版, 2010(5):624-630. LI Huaxiong, LIU Dun, ZHOU Xianzhong. Review on decision-theoretic rough set model[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science 2010(5):624-630.
[10] LI Huaxiong, ZHOU Xianzhong, ZHAO Jiabao, et al. Attribute reduction in decision-theoretic rough set model: A Further Investigation[M]//Yao J, Ramanna S, Wang G, et al. Rough Sets and Knowledge Technology. Berlin Heidelberg:Springer, 2011, 178:466-475.
[11] LI Hua-xiong, ZHOU Xian-zhong. Risk decision making based on decision-theoretic rough set: a three-way view decision model[J]. International Journal of Computational Intelligence Systems, 2011, 4(1):1-11.
[12] 李华雄,周献中,黄兵,等. 决策粗糙集与代价敏感分类[J]. 计算机科学与探索, 2013(2):126-135. LI Huaxiong, ZHOU Xianzhong, HUANG Bing, et al. Decision-theoretic rough set model and cost-sensitive classification[J]. Journal of Frontiers of Computer Science and Technology, 2013(2):126-135.
[13] 李华雄,周献中,李天瑞,等. 决策粗糙集理论及其发展[M]. 北京:科学出版社, 2011. LI Huaxiong, ZHOU Xianzhong, LI Tianrui, et al. Decision-theoretic rough sets theory and recent research[M]. Being:Science Press, 2011.
[14] 贾修一,商琳,陈家骏. 决策风险最小化属性约简[J]. 计算机科学与探索, 2011(2):155-160. JIA Xiuyi, SHANG LIN, CHEN Jiajun. Attribute reduction based on minimum decision cost[J]. Journal of Frontiers of Computer Science and Technology, 2011(2):155-160.
[15] YAO Yiyu, DENG Xiaofei. Sequential three-way decisions with probabilistic rough sets[C]//IEEE Cognitive Informatics & Cognitive Computing Berlin Heidelberg:Springer, 2011: 120-125.
[16] LI Huaxiong, ZHOU Xianzhong, HUANG Bing, et al. Cost-sensitive three-way decision: A sequential strategy[M]//WANG Guoyin, LI Tianrui, Grzymala-Busse J W, et al. Rough Sets and Knowledge Technology. Berlin Heidelberg: Springer, 2013, 325-337.
[17] YAO Yiyu, ZHAO Yan. Attribute reduction in decision-theoretic rough set models[J]. Information Sciences, 2008, 178(17):3356-3373.
[18] YAO Yiyu. Two semantic issues in a probabilistic rough set model[J]. Fundamenta Informaticae, 2011, 108(3):249-265.
[19] ZHOU Xianzhong, LI Huaxiong. A multi-view decision model based on decision-theoretic rough set[M]. New York: Springer, 2009:650-657.
[20] 刘盾,李天瑞,苗夺谦,等. 三支决策与粒计算[M]. 北京:科学出版社, 2013. LIU Dun, LI Tianrui, MIAO Duoqian, et al. Three-waydecision model and granular computing[M]. Beijing:Science Press, 2013.
[21] ELKAN Charles. The foundations of cost-sensitive learning[C]//International Joint Conference on Artificial Intelligence, 2001:973-978
[22] ABE Naoki, ZADRROZNY Bianca, LANGFORD John. An iterative method for multi-class cost-sensitive learning[C]//Association for Computing Machinery Berlin Heidelberg:Springer, 2004:3-11.
[23] 杜平,徐大为,刘重庆. 光照和噪声条件下的人脸识别[J]. 上海交通大学学报, 2003(9):1443-1446. DU Ping, XU Dawei, LIU Chongqing. Face recognition method under non-uniform illumination and noise[J]. Journal of Shanghai Jiaotong University, 2003(9):1443-1446.
[24] TURK Matthew, PENTLAND Alex. Eigenfaces for recognition[J]. Journal of Cognitive Neuroscience, 1991, 3(1):71-86.
[25] SAMARIA Ferdinand, HARTER Andy. Parameterisation of a stochastic model for human face identification[C]//IEEE Workshop on the Applications of Computer Vision. Berlin Heidelberg:Springer, 1994:973-978.
[26] SIM Terence, BAKER Simon, BSAT Maan. The CMU pose, illumination, and expression database[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2003, 25(12):1615-1618.
[1] 顾沈明,陆瑾璐,吴伟志,庄宇斌. 广义多尺度决策系统的局部最优粒度选择[J]. 山东大学学报(理学版), 2018, 53(8): 1-8.
[2] 李丽,管涛,林和. 基于泛系算子的泛系混合并联粗糙集模型[J]. 山东大学学报(理学版), 2017, 52(7): 22-29.
[3] 胡谦,米据生,李磊军. 多粒度模糊粗糙近似算子的信任结构与属性约简[J]. 山东大学学报(理学版), 2017, 52(7): 30-36.
[4] 黄天意,祝峰. 基于流形学习的代价敏感特征选择[J]. 山东大学学报(理学版), 2017, 52(3): 91-96.
[5] 汪小燕,沈家兰,申元霞. 基于加权粒度和优势关系的程度多粒度粗糙集[J]. 山东大学学报(理学版), 2017, 52(3): 97-104.
[6] 刘国涛,张燕平,徐晨初. 一种优化覆盖中心的三支决策模型[J]. 山东大学学报(理学版), 2017, 52(3): 105-110.
[7] 黄伟婷,赵红,祝峰. 代价敏感属性约简的自适应分治算法[J]. 山东大学学报(理学版), 2016, 51(8): 98-104.
[8] 吕盟, 刘哲, 刘建伟. 企业级无线局域网可信域间访问控制方案[J]. 山东大学学报(理学版), 2014, 49(11): 82-88.
[9] 杜丽娜, 徐久成, 刘洋洋, 孙林. 基于三支决策风险最小化的风险投资评估应用研究[J]. 山东大学学报(理学版), 2014, 49(08): 66-72.
[10] 田海龙, 朱艳辉, 梁韬, 马进, 刘璟. 基于三支决策的中文微博观点句识别研究[J]. 山东大学学报(理学版), 2014, 49(08): 58-65.
[11] 张聪, 于洪. 一种三支决策软增量聚类算法[J]. 山东大学学报(理学版), 2014, 49(08): 40-47.
[12] 刘纪芹,张彤. P-集合的粒度与P-知识辨识发现[J]. 山东大学学报(理学版), 2014, 49(06): 6-10.
[13] 卢清平1,苏守宝1,2*,郁书好1,3,4,杨柳1. 一种层次信任的多粒度RBAC扩展模型[J]. J4, 2013, 48(7): 51-55.
[14] 杨伟萍1,林梦雷2. 直觉模糊信息系统中的信息粒度[J]. J4, 2012, 47(1): 87-92.
[15] 高枫1,何泾沙2. 基于信任和信息流模型的隐私保护方法[J]. J4, 2011, 46(5): 39-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!