《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (3): 81-94.doi: 10.6040/j.issn.1671-9352.1.2022.3548
Xueqiang ZENG(),Yu SUN,Ye LIU,Zhongying WAN*(),Jiali ZUO,Mingwen WANG
摘要:
提出了一种基于情感分布的emoji嵌入式表示方法(emoji embedded representation based on emotion distribution, EDEER)。EDEER方法采用基于BERT的情绪预测模型软标签, 从真实数据中学习emoji嵌入式表示, 通过情感分布直接建模emoji在各种情绪上的表达程度, 使嵌入式表示中包含emoji的多种情感信息。在包含emoji的中文微博数据集上的多组对比实验表明, 本文提出的方法可以有效地学习到与细粒度情绪直接关联的emoji嵌入式表示, 构建具有较高情绪表达质量的emoji表示空间。
中图分类号:
1 |
BIRJALI M , KASRI M , HSSANE A B . A comprehensive survey on sentiment analysis: approaches, challenges and trends[J]. Knowledge-Based Systems, 2021, 226, 107134.
doi: 10.1016/j.knosys.2021.107134 |
2 | GUPTA S, SINGH A, RANJAN J. Sentiment analysis: usage of text and emoji for expressing sentiments[C]//Advances in Data and Information Sciences: Proceedings of ICDIS 2019. Singapore: Springer, 2020: 477-486. |
3 |
LEE S , JEONG D , PARK E . MultiEmo: multi-task framework for emoji prediction[J]. Knowledge-Based Systems, 2022, 242, 108437.
doi: 10.1016/j.knosys.2022.108437 |
4 | 谭皓, 邓树文, 钱涛, 等. 基于表情符注意力机制的微博情感分析模型[J]. 计算机应用研究, 2019, 36 (9): 2647- 2650. |
TAN Hao , DENG Shuwen , QIAN Tao , et al. A microblog sentiment analysis model based on emoji attention mechanism[J]. Application Research of Computers, 2019, 36 (9): 2647- 2650. | |
5 | 谢丽星, 周明, 孙茂松. 基于层次结构的多策略中文微博情感分析和特征抽取[J]. 中文信息学报, 2012, 26 (1): 73- 84. |
XIE Lixing , ZHOU Ming , SUN Maosong . Hierarchical structure based hybrid approach to sentiment analysis of Chinese microblog and its feature extraction[J]. Journal of Chinese Information Processing, 2012, 26 (1): 73- 84. | |
6 | EISNER B, ROCKTÄ T, AUGENSTEIN I, et al. Emoji2vec: learning emoji representations from their description[C]//Proceedings of the Fourth International Workshop on Natural Language Processing for Social Media. Stroudsburg: ACL, 2016: 48-54. |
7 | GROVER V . Exploiting emojis in sentiment analysis: a survey[J]. Journal of the Institution of Engineers (India): Series B, 2021, 103 (1): 1- 14. |
8 | WIJERATNE S, BALASURIYA L, SHETH A, et al. A semantics-based measure of emoji similarity[C]//Proceedings of the International Conference on Web Intelligence. New York: ACM, 2017: 646-653. |
9 | BARBIERI F, RONZANO F, SAGGION H. What does this emoji mean? a vector space skip-gram model for Twitter emojis[C]//Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016). Slovenia: ELRA, 2016: 3967-3972. |
10 | LI M, GUNTUKU S, JAKHETIYA V, et al. Exploring (dis-) similarities in emoji-emotion association on Twitter and Weibo[C]//Companion proceedings of the 2019 world wide web conference. New York: ACM, 2019: 461-467. |
11 | SHOEB A A M, DE MELO G. Emotag1200: understanding the association between emojis and emotions[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 8957-8967. |
12 | 王文远, 王大玲, 冯时, 等. 一种面向情感分析的微博表情情感词典构建及应用[J]. 计算机与数字工程, 2012, 40 (11): 6- 9. |
WANG Wenyuang , WANG Daling , FENG Shi , et al. A sentiment dictionary construction and application of microblog emoji sentiment dictionary for sentiment analysis[J]. Computer and Digital Engineering, 2012, 40 (11): 6- 9. | |
13 |
NOVAK P K , SMAILOVI Ć J , SLUBAN B , et al. Sentiment of emojis[J]. PLoS One, 2015, 10 (12): e0144296.
doi: 10.1371/journal.pone.0144296 |
14 | LI D , RZEPKA R , PTASZYNSKI M , et al. HEMOS: a novel deep learning-based fine-grained humor detecting method for sentiment analysis of social media[J]. Information Processing & Management, 2020, 57 (6): 102290. |
15 | LI M, LONG Y, QIN L, et al. Emotion corpus construction based on selection from hashtags[C]//Proceedings of the Tenth International Conference on Language Resources and Evaluation. Slovenia: ELRA, 2016: 1845-1849. |
16 | 何炎祥, 孙松涛, 牛菲菲, 等. 用于微博情感分析的一种情感语义增强的深度学习模型[J]. 计算机学报, 2017, 40 (4): 18. |
HE Yanxiang , SUN Songtao , NIU Feifei , et al. A deep learning model enhanced with emotion semantics for microblog sentiment analysis[J]. Chinese Journal of Computers, 2017, 40 (4): 18. | |
17 | FELBO B, MISLOVE A, S∅GAARD A, et al. Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2017: 1615-1625. |
18 | SINGH A, BLANCO E, JIN W. Incorporating emoji descriptions improves tweet classification[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2019: 2096-2101. |
19 | DIMSON T . Emojineering part 1: machine learning for emoji trends[J]. Instagram Engineering Blog, 2015, 30, 1- 10. |
20 | KIMURA M, KATSURAI M. Automatic construction of an emoji sentiment lexicon[C]//Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. New York: ACM, 2017: 1033-1036. |
21 | ZHOU Y, XUE H, GENG X. Emotion distribution recognition from facial expressions[C]//Proceedings of the 23rd ACM International Conference on Multimedia. New York: ACM, 2015: 1247-1250. |
22 | 曾雪强, 罗明珠, 陈素芬, 等. 基于自适应多重多元回归的人脸年龄估计[J]. 江西师范大学学报(自然科学版), 2019, 43 (1): 68- 75. |
ZENG Xueqiang , LUO Mingzhu , CHEN Sufen , et al. The facial age estimation based on adaptive multivariate multiple regression[J]. Journal of Jiangxi Normal University(Natural Sciences Edition), 2019, 43 (1): 68- 75. | |
23 | ZHAO Z, MA X. Text emotion distribution learning from small sample: a meta-learning approach[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 3955-3965. |
24 | ZHOU D, QUOST B, FRÉMONT V. Soft label based semi-supervised boosting for classification and object recognition[C]//2014 13th International Conference on Control Automation Robotics & Vision. Piscataway: IEEE, 2014: 1062-1067. |
25 | FAYEK H M, LECH M, CAVEDON L. Modeling subjectiveness in emotion recognition with deep neural networks: ensembles vs soft labels[C]//2016 International Joint Conference on Neural Networks. Piscataway: IEEE, 2016: 566-570. |
26 | ZHAO Z, WU S, YANG M, et al. Robust machine reading comprehension by learning soft labels[C]//Proceedings of the 28th International Conference on Computational Linguistics. Berlin: ICCL, 2020: 2754-2759. |
27 | FORNACIARI T, UMA A, PAUN S, et al. Beyond black & white: leveraging annotator disagreement via soft-label multi-task learning[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2021: 2591-2597. |
28 | WANG X, ZONG C. Distributed representations of emotion categories in emotion space[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2021: 2364-2375. |
29 | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2019: 4171-4186. |
30 | 姚源林, 王树伟, 徐睿峰, 等. 面向微博文本的情绪标注语料库构建[J]. 中文信息学报, 2014, 28 (5): 83- 91. |
YAO Yuanlin , WANG Shuwei , XU Ruifeng , et al. The construction of an emotion annotated corpus on microblog text[J]. Journal of Chinese Information Processing, 2014, 28 (5): 83- 91. | |
31 | LI S, ZHAO Z, HU R, et al. Analogical reasoning on Chinese morphological and semantic relations[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2018: 138-143. |
32 | DEMSZKY D, MOVSHOVITZ-ATTIAS D, KO J, et al. GoEmotions: a dataset of fine-grained emotions[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 4040-4054. |
33 | KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1746-1751. |
34 | SCHUSTER M , PALIWAL K K . Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45 (11): 2673- 2681. |
35 | VAN DER MAATEN L , HINTON G . Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9 (11): 2579- 2605. |
36 | SONG Y, SHI S, LI J, et al. Directional skip-gram: explicitly distinguishing left and right context for word embeddings[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg: ACL, 2018: 175-180. |
37 | JOULIN A, GRAVE E, BOJANOWSKI P, et al. Bag of tricks for efficient text classification[C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics. Stroudsburg: ACL, 2017: 427-431. |
38 | TANG D, WEI F, YANG N, et al. Learning sentiment-specific word embedding for Twitter sentiment classification[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2014: 1555-1565. |
[1] | 施寒潇,厉小军,郝腾达,柳虹,朱柳青. 微博短文本的情绪分析方法[J]. 山东大学学报(理学版), 2017, 52(7): 80-90. |
[2] | 杜漫,徐学可,杜慧,伍大勇,刘悦,程学旗. 面向情绪分类的情绪词向量学习[J]. 山东大学学报(理学版), 2017, 52(7): 52-58. |
|