《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (7): 1-26.doi: 10.6040/j.issn.1671-9352.1.2023.043
• 综述 • 下一篇
杨纪元1(),马沐阳1,任鹏杰1,*(),陈竹敏1,任昭春1,辛鑫1,蔡飞2,马军1
Jiyuan YANG1(),Muyang MA1,Pengjie REN1,*(),Zhumin CHEN1,Zhaochun REN1,Xin XIN1,Fei CAI2,Jun MA1
摘要:
近来涌现一批研究工作探讨如何将预训练技术应用在推荐场景下并构造预训练任务,以此提升最终的推荐性能。对现有的基于预训练的推荐模型研究进展进行重点综述;并对不同的预训练方法进行分类和比较,在3个推荐系统基准数据集上对一些代表性模型进行实验和分析,相关的数据集和代码已开源;最后对预训练的推荐模型的未来发展趋势进行总结和展望。
中图分类号:
1 | 刘建伟, 刘媛, 罗雄麟. 深度学习研究进展[J]. 计算机应用研究, 2014, 31 (7): 1921-1930, 1942. |
LIU Jianwei , LIU Yuan , LUO Xionglin . Research and development on deep learning[J]. Application Research of Computers, 2014, 31 (7): 1921-1930, 1942. | |
2 | FANG Hui , ZHANG Danning , SHU Yiheng , et al. Deep learning for sequential recommendation: algorithms, influential factors, and evaluations[J]. ACM Transactions on Information Systems, 2020, 39 (1): 10. |
3 | WANG Shoujin , CAO Longbing , WANG Yan , et al. A survey on session-based recommender systems[J]. ACM Computing Surveys, 2021, 54 (7): 154. |
4 | ZHENG Lin, GUO Naicheng, CHEN Weihao, et al. Sentiment-guided sequential recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1957-1960. |
5 | KANG W C, CHENG D Z, YAO T S, et al. Learning to embed categorical features without embedding tables for recommendation[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. New York: ACM, 2021: 840-850. |
6 | GUO Huifeng, CHEN Bo, TANG Ruiming, et al. An embedding learning framework for numerical features in CTR prediction[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. New York: ACM, 2021: 2910-2918. |
7 | WANG Pengfei, FAN Yu, XIA Long, et al. KERL: a knowledge-guided reinforcement learning model for sequential recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 209-218. |
8 | CHO S M, PARK E, YOO S. MEANTIME: mixture of attention mechanisms with multi-temporal embeddings for sequential recommendation[C]//Proceedings of the ACM Conference on Recommender Systems, New York: ACM, 2020: 515-520. |
9 | YUAN Fajie, HE Xiangnan, JIANG Haochuan, et al. Future data helps training: modeling future contexts for session-based recommendation[C]//Proceedings of the Web Conference 2020. Taipei: ACM, 2020: 303-313. |
10 | 刘睿珩, 叶霞, 岳增营. 面向自然语言处理任务的预训练模型综述[J]. 计算机应用, 2021, 41 (5): 1236- 1246. |
LIU Ruiheng , YE Xia , YUE Zengying . Review of pre-trained models for natural language processing tasks[J]. Journal of Computer Applications, 2021, 41 (5): 1236- 1246. | |
11 | WANG Meng , FU Weijia , HE Xiangnan , et al. A survey on large-scale machine learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34 (6): 2574- 2594. |
12 |
QIU Xipeng , SUN Tianxiang , XU Yige , et al. Pre-trained models for natural language processing: a survey[J]. Science China Technological Sciences, 2020, 63 (10): 1872- 1897.
doi: 10.1007/s11431-020-1647-3 |
13 | LAN Z Z, CHEN M D, GOODMAN S, et al. ALBERT: a lite BERT for self-supervised learning of language representations[C/OL]//Proceedings of the International Conference on Learning Representations, 2020: 1-17. https://openreview.net/pdf?id=H1eA7AEtvS. |
14 | LEWIS M, LIU Y H, GOYAL N, et al. BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2020: 7871-7880. |
15 | 岳增营, 叶霞, 刘睿珩. 基于语言模型的预训练技术研究综述[J]. 中文信息学报, 2021, 35 (9): 15- 29. |
YUE Zengying , YE Xia , LIU Ruiheng . A survey of language model based pre-training technology[J]. Journal of Chinese Information Processing, 2021, 35 (9): 15- 29. | |
16 |
HAN Xu , ZHANG Zhengyan , DING Ning , et al. Pre-trained models: past, present and future[J]. AI Open, 2021, 2, 225- 250.
doi: 10.1016/j.aiopen.2021.08.002 |
17 | DEVLIN J, CHANG M W, LEE K, et al. Bert: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the North American Chapter of the Association for Computational Linguistics. New Orleans: Association for Computational Linguistics, 2018: 4171-4186. |
18 | GILLIOZ A, CASAS J, MUGELLINI E, et al. Overview of the transformer-based models for NLP tasks[C]//2020 15th Conference on Computer Science and Information Systems (FedCSIS). Sofia: IEEE, 2020: 179-183. |
19 | ZHANG J Q, ZHAO Y, MOHAMMAD S, et al. Pegasus: pre-training with extracted gap-sentences for abstractive summarization[C/OL]//Proceedings of the 37th International Conference on Machine Learning, 2020: 11328-11339. https://dl.acm.org/doi/pdf/10.5555/3524938.3525989. |
20 |
LIU Y H , GU J T , GOYAL N , et al. Multilingual denoising pre-training for neural machine translation[J]. Transactions of the Association for Computational Linguistics, 2020, 8, 726- 742.
doi: 10.1162/tacl_a_00343 |
21 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: ACM, 2017: 6000-6010. |
22 | SUN Peijie, WU Le, ZHANG Kun, et al. Dual learning for explainable recommendation: towards unifying user preference prediction and review generation[C]//Proceedings of the Web Conference 2020. Taipei: ACM, 2020: 837-847. |
23 | LI Chenliang, NIU Xichuan, LUO Xiangyang, et al. A review-driven neural model for sequential recommendation[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. Macao: International Joint Conferences on Artificial Intelligence, 2019: 2866-2872. |
24 | CHEN Xusong, LIU Dong, LEI Chenyi, et al. BERT4SessRec: content-based video relevance prediction with bidirectional encoder representations from transformer[C]//Proceedings of the 27th ACM International Conference on Multimedia. Nice: ACM, 2019: 2597-2601. |
25 | MA Muyang, REN Pengjie, CHEN Zhumin, et al. Improving transformer-based sequential recommenders through preference editing[EB/OL]. (2021-06-23)[2023-10-18]. http://arxiv.org/abs/2106.12120. |
26 |
GUO Qingyu , ZHUANG Fuzhen , QIN Chuan , et al. A survey on knowledge graph-based recommender systems[J]. Scientia Sinica Informationis, 2020, 50 (7): 937- 956.
doi: 10.1360/SSI-2019-0274 |
27 | LAKE T, WILLIAMSON S A, HAWK A T, et al. Large-scale collaborative filtering with product embeddings[EB/OL]. (2019-01-11)[2023-10-18]. http://arxiv.org/abs/1901.04321. |
28 | SHIN K, KWAK H, KIM K M, et al. One4all user representation for recommender systems in E-commerce[EB/OL]. (2021-05-24)[2023-10-18]. http://arxiv.org/abs/2106.00573. |
29 |
ZENG Zheni , XIAO Chaojun , YAO Yuan , et al. Knowledge transfer via pre-training for recommendation: a review and prospect[J]. Frontiers in Big Data, 2021, 4, 602071.
doi: 10.3389/fdata.2021.602071 |
30 | DE SOUZA PEREIRA MOREIRA G, RABHI S, LEE J M, et al. Transformers4Rec: bridging the gap between NLP and sequential/session-based recommendation[C]//Proceedings of the 15th ACM Conference on Recommender Systems. Amsterdam: ACM, 2021: 143-153. |
31 | GUO Qingyu, ZHUANG Fuzhen, QIN Chuan, et al. A survey on knowledge graph-based recommender systems[EB/OL]. (2020-02-28)[2023-10-18]. https://arxiv.org/abs/2003.00911. |
32 |
GUO Lei , WEN Yufei , WANG Xinhua . Exploiting pre-trained network embeddings for recommendations in social networks[J]. Journal of Computer Science and Technology, 2018, 33 (4): 682- 696.
doi: 10.1007/s11390-018-1849-9 |
33 | WANG H, ZHOU K, ZHAO W X, et al. Curriculum pre-training heterogeneous subgraph transformer for top-N recommendation[EB/OL]. (2021-06-12)[2023-10-18]. http://arxiv.org/abs/2106.06722. |
34 | YUAN Xu, CHEN Hongshen, SONG Yonghao, et al. Improving sequential recommendation consistency with self-supervised imitation[C]//Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence. Montreal: International Joint Conferences on Artificial Intelligence, 2021: 3321-3327. |
35 | ZHOU Xin, SUN Aixin, LIU Yong, et al. SelfCF: a simple framework for self-supervised collaborative filtering[EB/OL]. (2021-07-07)[2023-10-18]. http://arxiv.org/abs/2107.03019. |
36 | HUANG J, ZHAO W X, DOU H J, et al. Improving sequential recommendation with knowledge-enhanced memory networks[C]//The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. Ann Arbor: ACM, 2018: 505-514. |
37 | WANG Hongwei, ZHANG Fuzheng, HOU Min, et al. SHINE: signed heterogeneous information network embedding for sentiment link prediction[C]//Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. Marina Del Rey: ACM, 2018: 592-600. |
38 | CAO Yixin, WANG Xiang, HE Xiangnan, et al. Unifying knowledge graph learning and recommendation: towards a better understanding of user preferences[C]//The World Wide Web Conference. San Francisco: ACM, 2019: 151-161. |
39 | ZHENG L, NOROOZI V, YU P S. Joint deep modeling of users and items using reviews for recommendation[C]//Proceedings of the Tenth ACM International Conference on Web Search and Data Mining. Cambridge: ACM, 2017: 425-434. |
40 |
NATARAJAN S , VAIRAVASUNDARAM S , NATARAJAN S , et al. Resolving data sparsity and cold start problem in collaborative filtering recommender system using linked open data[J]. Expert Systems with Applications, 2020, 149, 113248.
doi: 10.1016/j.eswa.2020.113248 |
41 | XIN X, KARATZOGLOU A, ARAPAKIS I, et al. Self-supervised reinforcement learning for recommender systems[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 931-940. |
42 | ZHOU K, WANG H, ZHAO W X, et al. S3-rec: self-supervised learning for sequential recommendation with mutual information maximization[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York: ACM, 2020: 1893-1902. |
43 | QIU Ruihong, HUANG Zi, YIN Hongzhi, et al. Contrastive learning for representation degeneration problem in sequential recommendation[C]//Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining. New York: ACM, 2022: 813-823. |
44 | LIU Zhuang, MA Yunpu, OUYANG Yuanxin, et al. Contrastive learning for recommender system[EB/OL]. (2021-01-05)[2023-10-18]. http://arxiv.org/abs/2101.01317. |
45 | LIU Zhiwei, CHEN Yongjun, LI Jia, et al. Contrastive self-supervised sequential recommendation with robust augmentation[EB/OL]. (2021-08-14)[2023-10-18]. http://arxiv.org/abs/2108.06479. |
46 | ZHANG Junwei, GAO Min, YU Junliang, et al. Double-scale self-supervised hypergraph learning for group recommendation[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. Queensland: ACM, 2021: 2557-2567. |
47 | WEI Yinwei, WANG Xiang, LI Qi, et al. Contrastive learning for cold-start recommendation[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York: ACM, 2021: 5382-5390. |
48 | LIU Xiao , ZHANG Fanjin , HOU Zhenyu , et al. Self-supervised learning: generative or contrastive[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35 (1): 857- 876. |
49 | KANG W C, MCAULEY J. Self-attentive sequential recommendation[C]//2018 IEEE International Conference on Data Mining (ICDM). Singapore: IEEE, 2018: 197-206. |
50 | SUN Fei, LIU Jin, WU Jian, et al. BERT4Rec: sequential recommendation with bidirectional encoder representations from transformer[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. Beijing: ACM, 2019: 1441-1450. |
51 | LIU Zhiwei, FAN Ziwei, WANG Yu, et al. Augmenting sequential recommendation with pseudo-prior items via reversely pre-training transformer[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 1608-1612. |
52 | XIE Xu, SUN Fei, LIU Zhaoyang, et al. Contrastive learning for sequential recommendation[EB/OL]. (2020-10-27)[2023-10-18]. http://arxiv.org/abs/2010.14395. |
53 | WU Jiancan, WANG Xiang, FENG Fuli, et al. Self-supervised graph learning for recommendation[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 726-735. |
54 |
XIA Xin , YIN Hongzhi , YU Junliang , et al. Self-supervised hypergraph convolutional networks for session-based recommendation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35 (5): 4503- 4511.
doi: 10.1609/aaai.v35i5.16578 |
55 | ZENG Zhe'ni, XIAO Chaojun, YAO Yuan, et al. Knowledge transfer via pre-training for recommendation: a review and prospect[EB/OL]. (2020-09-19)[2023-10-18]. https://arxiv.org/abs/2009.09226. |
56 | YU Junliang, YIN Hongzhi, XIA Xin, et al. Self-supervised learning for recommender systems: a survey[EB/OL]. (2022-03-29)[2023-10-18]. http://arxiv.org/abs/2203.15876. |
57 | 王国霞, 刘贺平. 个性化推荐系统综述[J]. 计算机工程与应用, 2012, 48 (7): 66- 76. |
WANG Guoxia , LIU Heping . Survey of personalized recommendation system[J]. Computer Engineering and Applications, 2012, 48 (7): 66- 76. | |
58 | 刘建国, 周涛, 汪秉宏. 个性化推荐系统的研究进展[J]. 自然科学进展, 2009, 19 (1): 1- 15. |
LIU Jianguo , ZHOU Tao , WANG Binghong . Research progress of personalized recommendation system[J]. Progress in Natural Science, 2009, 19 (1): 1- 15. | |
59 | 黎星星, 黄小琴, 朱庆生. 电子商务推荐系统研究[J]. 计算机工程与科学, 2004, 26 (5): 7- 10. |
LI Xingxing , HUANG Xiaoqin , ZHU Qingsheng . An exploration of the recommender systems in E-commerce[J]. Computer Engineering & Science, 2004, 26 (5): 7- 10. | |
60 |
BOCK J R , MAEWAL A . Adversarial learning for product recommendation[J]. AI, 2020, 1 (3): 376- 388.
doi: 10.3390/ai1030025 |
61 | 孟祥武, 胡勋, 王立才, 等. 移动推荐系统及其应用[J]. 软件学报, 2013, 24 (1): 91- 108. |
MENG Xiangwu , HU Xun , WANG Licai , et al. Mobile recommender systems and their applications[J]. Journal of Software, 2013, 24 (1): 91- 108. | |
62 | 项亮. 推荐系统实践[M]. 北京: 人民邮电出版社, 2012. |
XIANG Liang . Recommended system practice[M]. Beijing: The People's Posts and Telecommunications Press, 2012. | |
63 | KOREN Y. The BellKor solution to the netflix grand prize[EB/OL]. Netflix prize documentation. 2009(2023-10-18). https://www.asc.ohio-state.edu/statistics/dmsl/GrandPrize2009_BPC_BellKor.pdf. |
64 | TÖSCHER A, JAHRER M, BELL R M. The bigchaos solution to the netflix grand prize[EB/OL]. Netflix prize documentation, 2009(2023-10-18). https://studylib.net/doc/18905717/the-bigchaos-solution-to-the-netflix-grand-prize. |
65 | MARTIN P, CHABBERT M. The pragmatic theory solution to the netflix grand prize[EB/OL]. Netflix prize documentation, 2009(2023-10-18). https://www.asc.ohio-state.edu/statistics/statgen/joul_aut2009/PragmaticTheory.pdf. |
66 |
ÇANO E , MORISIO M . Hybrid recommender systems: a systematic literature review[J]. Intelligent Data Analysis, 2017, 21 (6): 1487- 1524.
doi: 10.3233/IDA-163209 |
67 |
BURKE R . Hybrid recommender systems: survey and experiments[J]. User Modeling and User-Adapted Interaction, 2002, 12 (4): 331- 370.
doi: 10.1023/A:1021240730564 |
68 | TANG Jiaxi, WANG Ke. Personalized top-N sequential recommendation via convolutional sequence embedding[C]//Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. Marina Del Rey: ACM, 2018: 565-573. |
69 | LI Jing, REN Pengjie, CHEN Zhumin, et al. Neural attentive session-based recommendation[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. Singapore: ACM, 2017: 1419-1428. |
70 | SEO S, HUANG J, YANG H, et al. Interpretable convolutional neural networks with dual local and global attention for review rating prediction[C]//Proceedings of the Eleventh ACM Conference on Recommender Systems. Como: ACM, 2017: 297-305. |
71 | HUANG Chunli , JIANG Wenjun , WU Jie , et al. Personalized review recommendation based on users' aspect sentiment[J]. ACM Transactions on Internet Technology, 2020, 20 (4): 42. |
72 | LIU Donghua, LI Jing, DU Bo, et al. DAML: dual attention mutual learning between ratings and reviews for item recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Anchorage: ACM, 2019: 344-352. |
73 |
WU Shu , TANG Yuyuan , ZHU Yanqiao , et al. Session-based recommendation with graph neural networks[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33 (1): 346- 353.
doi: 10.1609/aaai.v33i01.3301346 |
74 | WANG Hongwei, ZHANG Fuzheng, WANG Jialin, et al. Ripplenet: propagating user preferences on the knowledge graph for recommender systems[C]//Proceedings of the ACM International Conference on Information and Knowledge Management, Turin: ACM, 2018: 417-426. |
75 | WANG Hongwei, ZHAO Miao, XIE Xing, et al. Knowledge graph convolutional networks for recommender systems[C]//The World Wide Web Conference. San Francisco: ACM, 2019: 3307-3313. |
76 | HUANG J, REN Z C, ZHAO W X, et al. Taxonomy-aware multi-hop reasoning networks for sequential recommendation[C]//Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining. Melbourne: ACM, 2019: 573-581. |
77 | HAO Bowen, ZHANG Jing, YIN Hongzhi, et al. Pre-training graph neural networks for cold-start users and items representation[C]//Proceedings of the 14th ACM International Conference on Web Search and Data Mining. New York: ACM, 2021: 265-273. |
78 | ABEL F , HERDER E , HOUBEN G J , et al. Cross-system user modeling and personalization on the social web[J]. User Modeling and User-Adapted Interaction, 2013, 23 (2/3): 169- 209. |
79 | HERLOCKER J L, KONSTAN J A, RIEDL J. Explaining collaborative filtering recommendations[C]//Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work. Philadelphia: ACM, 2000: 241-250. |
80 |
QUIJANO-SANCHEZ L , SAUER C , RECIO-GARCIA J A , et al. Make it personal: a social explanation system applied to group recommendations[J]. Expert Systems with Applications, 2017, 76, 36- 48.
doi: 10.1016/j.eswa.2017.01.045 |
81 | MA H, KING I, LYU M R. Learning to recommend with social trust ensemble[C]//Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval. Boston: ACM, 2009: 203-210. |
82 | MA H, LYU M R, KING I. Learning to recommend with trust and distrust relationships[C]//Proceedings of the Third ACM Conference on Recommender Systems. New York: ACM, 2009: 189-196. |
83 | 张永锋. 个性化推荐的可解释性研究[M]. 北京: 清华大学出版社, 2019. |
ZHANG Yongfeng . Research on the interpretability of personalized recommendation[M]. Beijing: Tsinghua University Press, 2019. | |
84 | YU Junliang, YIN Hongzhi, GAO Min, et al. Socially-aware self-supervised tri-training for recommendation[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. New York: ACM, 2021: 2084-2092. |
85 | YU Junliang, YIN Hongzhi, LI Jundong, et al. Self-supervised multi-channel hypergraph convolutional network for social recommendation[C]//Proceedings of the Web Conference 2021. Ljubljana: ACM, 2021: 413-424. |
86 | WANG Xiang, HE Xiangnan, NIE Liqiang, et al. Item silk road: recommending items from information domains to social users[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. Tokyo: ACM, 2017: 185-194. |
87 | SONG Weiping, XIAO Zhiping, WANG Yifan, et al. Session-based social recommendation via dynamic graph attention networks[C]//Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining. Melbourne: ACM, 2019: 555-563. |
88 | CHEN T W, WONG R C W. An efficient and effective framework for session-based social recommendation[C]//Proceedings of the 14th ACM International Conference on Web Search and Data Mining. New York: ACM, 2021: 400-408. |
89 | PAN Zhiqiang, CAI Fei, LING Yanxiang, et al. Rethinking item importance in session-based recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1837-1840. |
90 | ZIMDARS A, CHICKERING D M, MEEK C. Using temporal data for making recommendations[C]//Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence. Seattle: ACM, 2001: 580-588. |
91 | SHANI G , HECKERMAN D , BRAFMAN R I . An MDP-based recommender system[J]. Journal of Machine Learning Research, 2005, (6): 1265- 1295. |
92 | HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks[C/OL]//Proceedings of the International Conference on Learning Representations, 2015: 1-10. https://arxiv.org/pdf/1511.06939v4. |
93 | XU Chengfeng, ZHAO Pengpeng, LIU Yanchi, et al. Graph contextualized self-attention network for session-based recommendation[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. Macao: ACM, 2019: 3940-3946. |
94 | LIU Qiang, WU Shu, WANG Diyi, et al. Context-aware sequential recommendation[C]//2016 IEEE 16th International Conference on Data Mining (ICDM). Barcelona: IEEE, 2016: 1053-1058. |
95 | QUADRANA M, KARATZOGLOU A, HIDASI B, et al. Personalizing session-based recommendations with hierarchical recurrent neural networks[C]//Proceedings of the Eleventh ACM Conference on Recommender Systems. Como: ACM, 2017: 130-137. |
96 | HIDASI B, QUADRANA M, KARATZOGLOU A, et al. Parallel recurrent neural network architectures for feature-rich session-based recommendations[C]//Proceedings of the 10th ACM Conference on Recommender Systems. Boston: ACM, 2016: 241-248. |
97 | BOGINA V, KUFLIK T. Incorporating dwell time in session-based recommendations with recurrent neural networks[C]//Proceedings of the ACM Conference on Recommender Systems, Como: ACM, 2017: 57-59. |
98 |
SUN Shiming , TANG Yuanhe , DAI Zemei , et al. Self-attention network for session-based recommendation with streaming data input[J]. IEEE Access, 2019, 7, 110499- 110509.
doi: 10.1109/ACCESS.2019.2931945 |
99 | ZHAI X H, OLIVER A, KOLESNIKOV A, et al. S4L: self-supervised semi-supervised learning[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul: IEEE, 2019: 1476-1485. |
100 | JING Longlong , TIAN Yingli . Self-supervised visual feature learning with deep neural networks: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43 (11): 4037- 4058. |
101 | CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[EB/OL]. (2020-02-13)[2023-10-18]. http://arxiv.org/abs/2002.05709. |
102 |
JAISWAL A , BABU A R , ZADEH M Z , et al. A survey on contrastive self-supervised learning[J]. Technologies, 2020, 9 (1): 2.
doi: 10.3390/technologies9010002 |
103 | MA Jianxin, ZHOU Chang, CUI Peng, et al. Learning disentangled representations for recommendation[EB/OL]. (2019-10-31)[2023-10-18]. https://arxiv.org/abs/1910.14238. |
104 | CHEN X L, FAN H Q, GIRSHICK R, et al. Improved baselines with momentum contrastive learning[EB/OL]. (2020-03-09)[2023-10-18]. http://arxiv.org/abs/2003.04297. |
105 | VAN DEN OORD A, LI Y Z, VINYALS O. Representation learning with contrastive predictive coding[EB/OL]. (2018-07-10)[2023-10-18]. http://arxiv.org/abs/1807.03748. |
106 | DOERSCH C, GUPTA A, EFROS A A. Unsupervised visual representation learning by context prediction[C]//2015 IEEE International Conference on Computer Vision (ICCV). Santiago: IEEE, 2015: 1422-1430. |
107 | WEI Chen, XIE Lingxi, REN Xutong, et al. Iterative reorganization with weak spatial constraints: solving arbitrary jigsaw puzzles for unsupervised representation learning[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019: 1910-1919. |
108 | KONG L P, DE MASSON D'AUTUME C, LING W, et al. A mutual information maximization perspective of language representation learning[C/OL]//Proceedings of the International Conference on Learning Representations, 2019: 1-11. https://openreview.net/forum?id=Syx79eBKwr. |
109 | YUAN F J, ZHANG G X, KARATZOGLOU A, et al. One person, one model, one world: learning continual user representation without forgetting[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 696-705. |
110 | LIU Yong, YANG Susen, LEI Chenyi, et al. Pre-training graph transformer with multimodal side information for recommendation[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York: ACM, 2021: 2853-2861. |
111 | XIAO Chaojun, XIE Ruobing, YAO Yuan, et al. UPRec: user-aware pre-training for recommender systems[EB/OL]. (2021-02-22)[2023-10-18]. http://arxiv.org/abs/2102.10989. |
112 |
QIU Zhaopeng , WU Xian , GAO Jingyue , et al. U-BERT: pre-training user representations for improved recommendation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35 (5): 4320- 4327.
doi: 10.1609/aaai.v35i5.16557 |
113 | YANG Jingxuan, XU Jun, TONG Jianzhuo, et al. Pre-training of context-aware item representation for next basket recommendation[EB/OL]. (2019-04-14)[2023-10-18]. http://arxiv.org/abs/1904.12604. |
114 | YUAN F J, HE X N, KARATZOGLOU A, et al. Parameter-efficient transfer from sequential behaviors for user modeling and recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1469-1478. |
115 | YAO T S, YI X Y, CHENG D Z, et al. Self-supervised learning for large-scale item recommendations[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. Queensland: ACM, 2021: 4321-4330. |
116 | ZHOU Chang, MA Jianxin, ZHANG Jianwei, et al. Contrastive learning for debiased candidate generation in large-scale recommender systems[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. New York: ACM, 2021: 3985-3995. |
117 | MA Jianxin, ZHOU Chang, YANG Hongxia, et al. Disentangled self-supervision in sequential recommenders[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2020: 183-491. |
118 | ZHAN Qi, LI Jingjie, JIA Qinglin, et al. Unbert: user-news matching bert for news recommendation[C]//Proceedings of the International Joint Conference on Artificial Intelligence. Montreal: Curran Association, Inc., 2021: 3356-3362. |
119 | SHANG Junyuan, MA Tenegfei, XIAO Cao, et al. Pre-training of graph augmented transformers for medication recommendation[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. Macao: International Joint Conferences on Artificial Intelligence, 2019: 5953-5959. |
120 | JIANG JY, LUO Y T, BOUM J B, et al. Sequential recommendation with bidirectional chronological augmentation of transformer[EB/OL]. (2021-12-13)[2023-10-18]. http://arxiv.org/abs/2112.06460. |
121 | WU Chunhan, WU Fangzhao, QI Tao, et al. PTUM: pre-training user model from unlabeled user behaviors via self-supervision[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, Stroudsburg: Association for Computational Linguistics, 2020: 1939-1944. |
122 | WANG H, ZHOU K, ZHAO W X, et al. Curriculum pre-training heterogeneous subgraph transformer for top-N recommendation[EB/OL]. (2021-06-12)[2023-10-18]. http://arxiv.org/abs/2106.06722. |
123 | LEE D H, KANG S, JU H, et al. Bootstrapping user and item representations for one-class collaborative filtering[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 1513-1522. |
124 | CHENG Mingyue, YUAN Fajie, LIU Qi, et al. Learning transferable user representations with sequential behaviors via contrastive pre-training[C]//2021 IEEE International Conference on Data Mining (ICDM). Auckland: IEEE, 2021: 51-60. |
125 | LIU Haochen, TANG Da, YANG Ji, et al. Self-supervised learning for alleviating selection bias in recommendation systems[C]//IRS 2021. New York: ACM, 2021. |
126 | TAO Yinghui, GAO Min, YU Junliang, et al. Predictive and contrastive: dual-auxiliary learning for recommendation[EB/OL]. (2022-03-08)[2023-10-18]. http://arxiv.org/abs/2203.03982. |
127 | BIAN S Q, ZHAO W X, ZHOU K, et al. Contrastive curriculum learning for sequential user behavior modeling via data augmentation[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. Queensland: ACM, 2021: 3737-3746. |
128 | XIA Xin, YIN Hongzhi, YU Junliang, et al. Self-supervised graph co-training for session-based recommendation[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. Queensland: ACM, 2021: 2180-2190. |
129 | HAO Bowen, YIN Hongzhi, ZHANG Jing, et al. A multi-strategy based pre-training method for cold-start recommendation[EB/OL]. (2021-12-04)[2023-10-18]. http://arxiv.org/abs/2112.02275. |
130 | YANG Yonghui, WU Le, HONG Richang, et al. Enhanced graph learning for collaborative filtering via mutual information maximization[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 71-80. |
131 | LI Yicong, CHEN Hongxu, SUN Xiangguo, et al. Hyperbolic hypergraphs for sequential recommendation[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. Queensland: ACM, 2021: 988-997. |
132 | WANG Chenyang , MA Weizhi , CHEN Chong , et al. Sequential recommendation with multiple contrast signals[J]. ACM Transactions on Information Systems, 2023, 41 (1): 1- 27. |
133 | CAO Jiangxia, LIN Xixun, GUO Shu, et al. Bipartite graph embedding via mutual information maximization[C]//Proceedings of the 14th ACM International Conference on Web Search and Data Mining. New York: ACM, 2021: 635-643. |
134 |
CAI Desheng , QIAN Shengsheng , FANG Quan , et al. Heterogeneous graph contrastive learning network for personalized micro-video recommendation[J]. IEEE Transactions on Multimedia, 2023, 25, 2761- 2773.
doi: 10.1109/TMM.2022.3151026 |
135 | LONG Xiaoliang, HUANG Chao, XU Yong, et al. Social recommendation with self-supervised metagraph informax network[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. Queensland: ACM, 2021: 1160-1169. |
136 | XIE Ruobing, LIU Qi, WANG Liangdong, et al. Contrastive cross-domain recommendation in matching[EB/OL]. (2021-12-02)[2023-10-18]. http://arxiv.org/abs/2112.00999. |
137 | WANG Chen, LIANG Yueqing, LIU Zhiwei, et al. Pre-training graph neural network for cross domain recommendation[C]//2021 IEEE Third International Conference on Cognitive Machine Intelligence (CogMI). Atlanta: IEEE, 2021: 140-145. |
138 | LIN Zihan, TIAN Changxin, HOU Yupeng, et al. Improving graph collaborative filtering with neighborhood-enriched contrastive learning[C]//Proceedings of the ACM Web Conference 2022. Lyon: ACM, 2022: 2320-2329. |
139 | CHEN Yongjun, LIU Zhiwei, LI Jia, et al. Intent contrastive learning for sequential recommendation[EB/OL]. (2022-02-05)[2023-10-18]. http://arxiv.org/abs/2202.02519. |
140 | GUO Wei, ZHANG Can, HE Zhicheng, et al. MISS: multi-interest self-supervised learning framework for click-through rate prediction[C]//2022 IEEE 38th International Conference on Data Engineering (ICDE). Kuala Lumpur: IEEE, 2022: 727-740. |
141 | YU Junliang, YIN Hongzhi, XIA Xin, et al. Graph augmentation-free contrastive learning for recommendation[EB/OL]. (2021-12-26)[2023-10-18]. https://arxiv.org/abs/2112.08679. |
142 | LIU Zhiwei, CHEN Yongjun, LI Jia, et al. Improving contrastive learning with model augmentation[EB/OL]. (2022-03-25)[2023-10-18]. http://arxiv.org/abs/2203.15508. |
143 | ZHAO Pengyu, SHUI Tianxiao, ZHANG Yuanxing, et al. Adversarial oracular Seq2seq learning for sequential recommendation[C]//Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. Yokoham: International Joint Conferences on Artificial Intelligence, 2020: 1905-1911. |
144 | REN Ruiyang, LIU Zhaoyang, LI Yaliang, et al. Sequential recommendation with self-attentive multi-adversarial network[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 89-98. |
145 | WU Qiong, LIU Yong, MIAO Chunyan, et al. PD-GAN: adversarial learning for personalized diversity-promoting recommendation[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. Macao: International Joint Conferences on Artificial Intelligence, 2019: 3870-3876. |
146 | CHEN Xinshi, LI Shuang, LI Hui, et al. Generative adversarial user model for reinforcement learning based recommendation system[EB/OL]. (2018-12-27)[2023-10-18]. http://arxiv.org/abs/1812.10613. |
147 | BHARADHWAJ H, PARK H, LIM B Y. RecGAN: recurrent generative adversarial networks for recommendation systems[C]//Proceedings of the 12th ACM Conference on Recommender Systems. Vancouver: ACM, 2018: 372-376. |
148 | MCAULEY J, TARGETT C, SHI Q F, et al. Image-based recommendations on styles and substitutes[C]//Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. Santiago: ACM, 2015: 43-52. |
149 | ZHANG Tingting, ZHAO Pengpeng, LIU Yanchi, et al. Feature-level deeper self-attention network for sequential recommendation[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. Macao: International Joint Conferences on Artificial Intelligence, 2019: 4320-4326. |
150 | MENG Wenjing, YANG Deqing, XIAO Yanghua. Incorporating user micro-behaviors and item knowledge into multi-task learning for session-based recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1091-1100. |
[1] | 刘忠慧,姜帅,闵帆. 模糊概念集的启发式构造方法及其推荐应用[J]. 《山东大学学报(理学版)》, 2024, 59(3): 14-26. |
[2] | 戚丽丽,孙静宇*,陈俊杰. 基于均模型的IBCF算法研究[J]. J4, 2013, 48(11): 105-110. |
[3] | 孙静宇,陈俊杰*,余雪丽,何秀. 基于CBR的协同Web搜索模型及应用研究[J]. J4, 2012, 47(5): 19-24. |
|