《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (7): 76-84.doi: 10.6040/j.issn.1671-9352.1.2023.097
桂梁1,2(),徐遥1,2,何世柱1,2,*(),张元哲1,2,*(),刘康1,2,赵军1,2
Liang GUI1,2(),Yao XU1,2,Shizhu HE1,2,*(),Yuanzhe ZHANG1,2,*(),Kang LIU1,2,Jun ZHAO1,2
摘要:
由于知识图谱(knowledge graph, KG)的构建和更新通常依赖大量网络数据和自动化方法,因此其中建模和获取的知识内容难免存在各种事实错误。为了解决这个问题,提出一种新知识图谱事实错误检测方法。该方法动态选择待检测事实的邻居节点,通过捕捉头尾实体之间的复杂关系来判断事实是否存在错误。首先利用图结构信息确定每个实体的潜在邻居; 然后根据实体的上下文信息动态地选择相关邻居,进而使用高效的图注意力网络编码节点的特性; 最终通过计算节点的头尾实体表示的一致性,判断待检测事实是否存在错误, 并在多个公开的知识图谱数据集上进行实验。结果表明, 该方法在错误检测方面表现优于现有的方法。
中图分类号:
1 | ZHANG Yongfeng, AI Qingyao, CHEN Xu, et al. Learning over knowledge-base embeddings for recommendation[EB/OL]. (2018-03-17)[2023-10-18]. http://arxiv.org/abs/1803.06540. |
2 | WANG Hongwei, ZHANG Fuzheng, ZHANG Mengdi, et al. Knowledge-aware graph neural networks with label smoothness regularization for recommender systems[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Anchorage: ACM, 2019: 968-977. |
3 | JUNG J, SON B, LYU S. Attnio: knowledge graph exploration with in-and-out attention flow for knowledge-grounded dialogue[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg: ACL, 2020: 3484-3497. |
4 |
GU Yuxian , WEN Jiaxin , SUN Hao , et al. Eva2. 0: investigating open-domain chinese dialogue systems with large-scale pre-training[J]. Machine Intelligence Research, 2023, 20 (2): 207- 219.
doi: 10.1007/s11633-022-1387-3 |
5 | SUCHANEK F M, KASNECI G, WEIKUN G. Yago: a core of semantic knowledge[C]//Proceedings of the 16th International Conference on World Wide Web. Albert: ACM, 2007: 697-706. |
6 | BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008: ACM SIGMOD International Conference on Management of Data. Vancouver: ACM, 2008: 1247-1250. |
7 |
LEHMANN J , ISELE R , JAKOB M , et al. Dbpedia: a large-scale, multilingual knowledge base extracted from wikipedia[J]. Semantic Web, 2015, 6 (2): 167- 195.
doi: 10.3233/SW-140134 |
8 |
CARLSON A , BETTERIDGE J , KISIEL B , et al. Toward an architecture for never-ending language learning[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2010, 24 (1): 1306- 1313.
doi: 10.1609/aaai.v24i1.7519 |
9 | CHEN Chaochao, ZHENG Fei, CUI Jiamie, et al. Survey and open problems in privacy-preserving knowledge graph: merging, query, representation, completion, and applications[J/OL]. International Journal of Machine Learning and Cybernetics, 2024: 1-20. https://link.springer.com/article/10.1007/s13042-024-02106-6. |
10 | YANG Yuji , XU Bin , HU Jiawei , et al. Accurate and efficient method for constructing domain knowledge graph[J]. Journal of Software, 2018, 29 (10): 2931- 2947. |
11 |
LAO N , COHEN W W . Relational retrieval using a combination of path-constrained random walks[J]. Machine Learning, 2010, 81, 53- 67.
doi: 10.1007/s10994-010-5205-8 |
12 | WANG Zhen , ZHANG Jiawen , FENG Jianlin , et al. Knowledge graph embedding by translating on hyperplanes[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2014, 28 (1): 112- 119. |
13 | ZHANG Qinggang, DONG Junnan, DUAN Keyu, et al. Contrastive knowledge graph error detection[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management. Atlanta: ACM, 2022: 2590-2599. |
14 | BRODY S, ALON U, YAHAV E. How attentive are graph attention networks?[EB/OL]. (2021-10-11)[2023-10-18]. http://arxiv.org/abs/2105.14491. |
15 |
RUI Yong , CARMONA V I S , POURVALI M , et al. Knowledge mining: a cross-disciplinary survey[J]. Machine Intelligence Research, 2022, 19 (2): 89- 114.
doi: 10.1007/s11633-022-1323-6 |
16 |
REDDY H , RAJ N , GALA M , et al. Text-mining-based fake news detection using ensemble methods[J]. International Journal of Automation and Computing, 2020, 17 (2): 210- 221.
doi: 10.1007/s11633-019-1216-5 |
17 | GALARRAGE L A, TEFLIOUDI C, HOSE K, et al. AMIE: association rule mining under incomplete evidence in ontological knowledge bases[C]//Proceedings of the 22nd International Conference on World Wide Web. Rio de Janeiro: ACM, 2013: 413-422. |
18 |
GALAEEAFE L , TEFLIOUDI C , HOSE K , et al. Fast rule mining in ontological knowledge bases with AMIE ++[J]. The VLDB Journal, 2015, 24 (6): 707- 730.
doi: 10.1007/s00778-015-0394-1 |
19 | CHENG Yurong, CHEN Lei, YUAN Ye, et al. Rule-based graph repairing: semantic and efficient repairing methods[C]//2018 IEEE 34th International Conference on Data Engineering (ICDE). Paris: IEEE, 2018: 773-784. |
20 | GUO Shu , WANG Quan , WANG Lihong , et al. Knowledge graph embedding with iterative guidance from soft rules[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32 (1): 4816- 4823. |
21 | GUO Shu, WANG Quan, WANG Lilong, et al. Jointly embedding knowledge graphs and logical rules[J]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Stroundsburg: Association for Computational Linguistics, 2016: 192-202. |
22 | TROUILLON T, WELBI J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]//International Conference on Machine Learning. New York: ACM, 2016: 2071-2080. |
23 | LIN Yankai, LIU Zhiyuan, SUN Maosong, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Astin: ACM, 2015, 29(1): 2181-2187. |
24 | FAN Miao, ZHOU Qiang, CHANG E, et al. Transition-based knowledge graph embedding with relational mapping properties[C]//Proceedings of the 28th Pacific Asia Conference on Language, Information and Computing. Phuket: Association for Computational Linguistics, 2014: 328-337. |
25 | JIA Shengbin, XIANG Yang, CHEN Xiaojun, et al. TTMF: a triple trustworthiness measurement frame for knowledge graphs[EB/OL]. (2018-11-06)[2023-10-18]. http://arxiv.org/abs/1809.09414. |
26 | YANG B S, YIH W, HE X D, et al. Embedding entities and relations for learning and inference in knowledge bases[EB/OL]. (2014-12-27)[2023-10-18]. http://arXiv preprint arXiv:1412.6575. |
[1] | 黎超, 廖薇. 基于医疗知识驱动的中文疾病文本分类模型[J]. 《山东大学学报(理学版)》, 2024, 59(7): 122-130. |
[2] | 牛泽群,李晓戈,强成宇,韩伟,姚怡,刘洋. 基于图注意力神经网络的实体消歧方法[J]. 《山东大学学报(理学版)》, 2024, 59(3): 71-80, 94. |
[3] | 那宇嘉,谢珺,杨海洋,续欣莹. 融合上下文的知识图谱补全方法[J]. 《山东大学学报(理学版)》, 2023, 58(9): 71-80. |
[4] | 马飞翔,廖祥文,於志勇,吴运兵,陈国龙. 基于知识图谱的文本观点检索方法[J]. 山东大学学报(理学版), 2016, 51(11): 33-40. |
[5] | 陆玮洁1 ,刘冰1,2 ,邹华彬1 ,张衡1 ,张新玲1 ,杨国生1 . 茶叶HNMR指纹图谱双指标序列分析[J]. J4, 2009, 44(3): 35-38 . |
|