《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (9): 71-80.doi: 10.6040/j.issn.1671-9352.4.2022.2743
Yujia NA1(),Jun XIE1,*(),Haiyang YANG1,Xinying XU2
摘要:
构建了一种融合了上下文的知识图谱补全模型。首先通过Inception网络得到给定头尾实体对的深度交互嵌入;其次定义和编码给定实体对的2种上、下文信息:邻接关系上下文和路径上下文;然后使用基于头尾交互嵌入的注意力机制,分别聚合给定实体对的邻接关系上下文和路径上下文;最后利用全连接层来融合给定实体对的2种上下文信息,预测给定实体对之间的关系。在数据集FB15K-237、WN18RR和NELL-995中与其他主流模型对比,实验结果证实了所提补全模型的有效性。
中图分类号:
1 | SU Yu, YANG Shengqi, HUAN Sun, et al. Exploiting relevance feedback in knowledge graph search[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2015: 1135-1144. |
2 | BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2008: 1247-1250. |
3 |
LEHMANN J , ISELE R , JAKOB M , et al. Dbpedia-A large-scale, multilingual knowledge base extracted from wikipedia[J]. Semantic Web, 2015, 6 (2): 167- 195.
doi: 10.3233/SW-140134 |
4 | SUCHANEK F M, KASNECI G, WEIKUM G. Yago: a core of semantic knowledge[C]//Proceedings of the 16th International Conference on World Wide Web. New York: ACM, 2007: 697-706. |
5 | SUN Yusheng , CHANG Kaiyue , ZHU Lijun . Research on large-scale knowledge graph and its application[J]. Information Studies: Theory & Application, 2018, 41 (11): 138- 143. |
6 | KROMPA D, BAIER S, TRESP V. Type-constrained representation learning in knowledge graphs[C]//Proceedings of International Semantic Web Conference. Berlin: Springer, 2015: 640-655. |
7 | ROSSI A , BARBOSA D , FIRMANI D , et al. Knowledge graph embedding for link prediction: a comparative analysis[J]. ACM Transactions on Knowledge Discovery from Data, 2020, 15 (2): 1- 49. |
8 | BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of Annual Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2013: 2787-2795. |
9 | DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graphembeddings[C]//Proceedings of the National Conferenceon Artificial Intelligence. Menlo Park: AAAI, 2018: 1811-1818. |
10 | SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1-9. |
11 | 刘知远, 孙茂松, 林衍凯, 等. 知识表示学习研究进展[J]. 计算机研究与发展, 2016, 53 (2): 247- 261. |
LIU Zhiyuan , SUN Maosong , LIN Yankai , et al. Knowledge representation learning: a review[J]. Journal of Computer Research and Development, 2016, 53 (2): 247- 261. | |
12 | BAI Luyi , MA Xiangnan , ZHAN Mingcheng , et al. TPmod: a tendency-guided prediction model for temporal knowledge graph completion[J]. ACM Transactions on Knowledge Discovery from Data, 2021, 15 (3): 1- 17. |
13 | WANG Zhen, ZHANG Jianwen, FENG Jianlin, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2014: 1112-1119. |
14 | LIN Yankai, LIU Zhiyuan, SUN Maosong, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the Twenty-ninth AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2015: 2181-2187. |
15 | JI Guoliang, HE Shizhu, XU Liheng, et al. Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing(Volume 1: Long Papers). Stroudsburg: ACL, 2015: 687-696. |
16 | JI Guoliang, LIU Kang, HE Shizhu, et al. Knowledge graph completion with adaptive sparse transfer matrix[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2016: 985-991. |
17 | JIA Yantao, WANG Yuanzhuo, LIN Hailun, et al. Locally adaptive translation for knowledge graph embedding[C]//Thirtieth AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2016: 992-998. |
18 | NICKEL M, TRESP V, KRIEGEL H P. A three-way model for collective learning on multi-relational data[C]//Proceedings of the 28th International Conference on Machine Learning. New York: ACM, 2011: 809-816. |
19 | YANG Bishan , YIH W T , HE Xiaodong , et al. Embedding entities and relations for learning and inference in knowledge bases[J]. Computer Science, 2014, 1412 (2): 6575- 6587. |
20 | TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]//Proceedings of the International Conference on Machine Learning. New York: ACM, 2016: 2071-2080. |
21 | MIKOLOV T , CHEN Kai , CORRADO G , et al. Efficient estimation of word representations in vector space[J]. Computer Science, 2013, 1301 (3): 3781- 3792. |
22 | SUN Zhiqing , DENG Zhihong , NIE Jianyun , et al. RotaTE: knowledge graph embedding by relational rotation in complex space[J]. Computer Science, 2019, 1902 (1): 10197- 10215. |
23 |
EBISU T , ICHISE R . Generalized translation-based embedding of knowledge graph[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32 (5): 941- 951.
doi: 10.1109/TKDE.2019.2893920 |
24 | XIONG Bo, ZHU Shichao, NAYYERI M, et al. Ultrahyperbolic knowledge graph embeddings[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Washington: ACM, 2022: 14-18. |
25 | MOON C, HARENBERG S, SLANKAS J, et al. Learning contextual embeddings for knowledge graph completion[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. New York: ACM, 2017: 2215-2218. |
26 | 周泽华, 陈恒, 李冠宇. 基于图上下文的知识表示学习[J]. 计算机应用与软件, 2021, 38 (6): 120- 125. |
ZHOU Zehua , CHEN Heng , LI Guanyu . Knowledge representation learning based on graph context[J]. Computer Applications and Software, 2021, 38 (6): 120- 125. | |
27 | ZHANG Qianjin , WANG Ronggui , YANG Juan , et al. Structural context-based knowledge graph embedding for link prediction[J]. Neurocomputing, 2022, 470 (22): 109- 120. |
28 | NING Zhiyuan, QIAO Ziyue, DONG Hao, et al. LightCAKE: a lightweight framework for context-aware knowledge graph embedding[J/OL]. arXiv, 2021. https://arxiv.org/abs/2102.10826v2. |
29 | LIN Yankai, LIU Zhiyuan, LUAN Hanbo, et al. Modeling relation paths for representation learning of knowledge bases[J/OL]. arXiv, 2015. https://arxiv.org/pdf/1506.00379.pdf. |
30 | SADEGHIAN A , ARMANDPOUR M , DING P , et al. DRUM: end-to-end differentiable rule mining on knowledgegraphs[J]. Advances in Neural Information Processing Systems, 2019, 32, 55- 66. |
31 | WANG Hongwei, REN Hongyu, LESKOVEC J. Relational message passing for knowledge graph completion[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. New York: ACM, 2021: 1697-1707. |
32 |
VASHISHTH S , SANYAL S , NITIN V , et al. InteractE: improving convolution-based knowledge graph embeddings by increasing feature interactions[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34 (3): 3009- 3016.
doi: 10.1609/aaai.v34i03.5694 |
33 | GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[C]//Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. Cambridge: MIT Press, 2011: 315-323. |
34 | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Computer Society, 2016: 2818-2826. |
35 | MAAS A L , HANNUN A Y , NG A Y . Rectifier nonlinearities improve neural network acoustic models[J]. International Conference on Machine Learning, 2013, 30 (1): 3. |
36 | TOUTANOVA K, CHEN Danqi, PANTEL P, et al. Representing text for joint embedding of text and knowledge bases[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2015: 1499-1509. |
37 | XIONG Wenhan , HOANG T , WANG W Y . Deeppath: a reinforcement learning method for knowledge graph reasoning[J]. Computer Science, 2017, 1707 (3): 48550- 48560. |
38 | TOUTANOVA K, CHEN Danqi. Observed versus latent features for knowledge base and text inference[C]//Proceedings of the 3rd Workshop on Continuous Vector Space Models and Their Compositionality. Stroudsburg: ACL Press, 2015: 57-66. |
39 | VU T, NGUYEN T D, NGUYEN D Q, et al. A capsule network-based embedding model for knowledge graph completion and search personalization[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1(Long and Short Papers). Stroudsburg: ACL, 2019: 2180-2189. |
[1] | 王静红,梁丽娜,李昊康,王熙照. 基于标记注意力机制的社区发现算法[J]. 《山东大学学报(理学版)》, 2022, 57(12): 1-12. |
[2] | 鲍亮,陈志豪,陈文章,叶锴,廖祥文. 基于双重多路注意力匹配的观点型阅读理解[J]. 《山东大学学报(理学版)》, 2021, 56(3): 44-53. |
[3] | 唐光远,郭军军,余正涛,张亚飞,高盛祥. 基于BERT与法条知识驱动的法条推荐方法[J]. 《山东大学学报(理学版)》, 2021, 56(11): 24-30. |
[4] | 郝长盈,兰艳艳,张海楠,郭嘉丰,徐君,庞亮,程学旗. 基于拓展关键词信息的对话生成模型[J]. 《山东大学学报(理学版)》, 2019, 54(7): 68-76. |
|