《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (12): 1-12.doi: 10.6040/j.issn.1671-9352.7.2021.097
• •
王静红1,2,梁丽娜1,李昊康1,王熙照3*
WANG Jing-hong1,2, LIANG Li-na1, LI Hao-kang1, WANG Xi-zhao3*
摘要: 针对网络的聚类进行研究,提出了一种基于标记注意力机制的社区发现算法,网络特征通过标记节点频率及反示例节点频率联合度量,为使网络特征的度量更加关注于示例节点的细节信息,引入注意力机制来处理网络特征。社区划分由复杂网络预处理、网络节点的策略、社区博弈归并三个部分组成,其中网络节点的策略由无贡献节点归并、节点到社区的判断以及节点逻辑标记和的判断三个步骤组成。实验借助于真实网络进行验证,在归一化互信息、模块度、社区划分数量及运行时间四个方面,基于标记注意力机制的社区发现算法都优于其它社区发现算法。在实际生活中应用此算法,能够更加直观地显示网络内部之间存在的联系。
中图分类号:
[1] 王静红,梁丽娜,李昊康,等.基于注意力网络特征的社区发现算法[J]. 山东大学学报(理学版), 2021, 56(9):1-12, 20. WANG Jinghong, LIANG Lina, LI Haokang, et al. Community discovery algorithm based on attention network feature[J]. Journal of Shandong University(Natural Science), 2021, 56(9):1-12,20. [2] YANG Haijuan, CHENG Jianjun, YANG Zeyi, et al. A node similarity and community link strength-based community discovery algorithm[J]. Complexity, 2021, 2021(22):1-17. [3] SINGHAL A, CAO S, CHURAS C, et al. Multiscale community detection in cytoscape[J]. PLoS Computational Biology, 2020, 16(10): e1008239. [4] LI T, LEVINA E, ZHU J. Network cross-validation by edge sampling[J]. Biometrika, 2020, 107(2):257-276. [5] RANGARAJAN N, KULKARNI P, HANNENHALLI S. Evolutionarily conserved network properties of intrinsically disordered proteins[J]. Plos One, 2015, 10(5):1-16. [6] CHOOBDAR S, AHSEN M E, CRAWFORD J, et al. Assessment of network module identification across complex diseases[J]. Nature Methods, 2019, 16(9):843-852. [7] CHEN P, REDNER R. Community structure of the physical review citation network[J]. Journal of Informetrics, 2010, 4(3):278-290. [8] CHUNAEV P. Community detection in node-attributed social networks: a survey[J]. Computer Science Review, 2020, 37:100286. [9] CHENG Ziwei, ZENG Ziwei. Joint label-specific features and label correlation for multi-label learning with missing label[J]. Applied Intelligence, 2020, 50(11):4029-4049. [10] CHEN J, LI Y, YANG X, et al. VGHC: a variable granularity hierarchical clustering for community detection[J]. Granular Computing, 2021, 6(1):1-10. [11] WU Zhaole, WANG Xin, FANG Wenyi, et al. Community detection based on first passage probabilities[J]. Physics Letters A, 2021, 390:127099. [12] LIU Xiaoyang, DING Nan, LIU Chao, et al. Novel social network community discovery method combined local distance with node rank optimization function[J]. Applied Intelligence, 2021, 51(7):4788-4805. [13] AKIMUSHKIN C, AMANCIO D R, OLIVEIRA O N. Text authorship identified using the dynamics of word co-occurrence networks[J]. Plos One, 2017, 12(1):1-15. [14] SHI C, HU B B, ZHAO W X, et al. Heterogeneous information network embedding for recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 31(2):357-370. [15] LI Yongjun, SU Zhaoting, YANG Jiaqi, et al. Exploiting similarities of user friendship networks across social networks for user identification[J]. Information Sciences, 2020, 506:78-98. [16] WANG Shanfeng, GONG Maoguo, LIU Wenfeng, et al. Preventing epidemic spreading in networks by community detection and memetic algorithm[J]. Applied Soft Computing, 2020, 89:106118. [17] HU Baofang, WANG Hong, ZHENG Yuanjie. Sign prediction and community detection in directed signed networks based on random walk theory[J]. International Journal of Embedded Systems, 2019, 11(2):200-209. [18] NEWMAN M E J. The structure and function of complex networks[J]. SIAM Review, 2003, 45(2):167-256. [19] GUO Kun, HE Ling, CHEN Yuzhong, et al. A local community detection algorithm based on internal force between nodes[J]. Applied Intelligence, 2020, 50(2):328-340. [20] YANG Gui, ZHENG Wenping, CHE Chenhao, et al. Graph-based label propagation algorithm for community detection[J]. International Journal of Machine Learning and Cybernetics, 2020, 11(6):1319-1329. [21] WEN Xuyun, LIN Ying. A multi-objective community detection algorithm for directed network based on random walk[J]. IEEE Access, 2019, 7:162652-162663. [22] HUANG Jin, ZHANG Tinghua, YU Weihao, et al. Community detection based on modularized deep nonnegative matrix factorization[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2021, 35(2):2159006. [23] SHI P, HE K, BINDEL D, et al. Locally-biased spectral approximation for community detection[J]. Knowledge-Based Systems, 2019, 164:459-472. [24] CHU Junfeng, WANG Yingming, LIU Xinwang, et al. Social network community analysis based large-scale group decision making approach with incomplete fuzzy preference relations[J]. Information Fusion, 2020, 60:98-120. [25] WU Zonghan, PAN Shirui, CHEN Fengwen, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(1):4-24. [26] ARASTEH M, ALIZADEH S. A fast divisive community detection algorithm based on edge degree betweenness centrality[J]. Applied Intelligence, 2019, 49(2):689-702. [27] 付常雷. 一种基于Newman快速算法改进的社团划分算法[J]. 计算机技术与发展, 2018, 28(1):33-35. FU Changlei. A community partitioning algorithm based on improved fast-Newman algorithm[J]. Computer Technology and Development, 2018, 28(1):33-35. [28] GIRVAN M, NEWMAN M E. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(12):7821-7826. [29] LIU Hongtao, FEN Linghu, JIAN Jie, et al. Overlapping community discovery algorithm based on hierarchical agglomerative clustering[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2018, 32(3):1850008. [30] YUAN Chao, RONG Chuitian, YAO Qingshuang. Boundary-connection deletion strategy based method for community detection in complex networks[J]. Applied Intelligence, 2020, 50(11):3570-3589. [31] NEWMAN M E J. Finding community structure in networks using the eigenvectors of matrices[J]. Physical Review E, 2006, 74(3):036104. [32] ZACHARY W W. An information flow model for conflict and fission in small groups[J]. Journal of Anthropological Research, 1977, 33(4):452-473. [33] LV Lintao, WU Jialin, LV Hui. A community discovery algorithm for complex networks[J]. Journal of Physics Conference Series, 2020, 1533(3):032076. [34] XIE Yu, GONG Maoguo, WANG Shanfeng, et al. Community discovery in networks with deep sparse filtering[J]. Pattern Recognition, 2018, 81:50-59. [35] HE Chaobo, FEI Xiang, LI Hanchao, et al. Improving NMF-based community discovery using distributed robust nonnegative matrix factorization with simrank similarity measure[J]. The Journal of Supercomputing, 2018, 74(10):5601-5624. |
[1] | 王静红,梁丽娜,李昊康,周易. 基于注意力网络特征的社区发现算法[J]. 《山东大学学报(理学版)》, 2021, 56(9): 1-12,20. |
[2] | 鲍亮,陈志豪,陈文章,叶锴,廖祥文. 基于双重多路注意力匹配的观点型阅读理解[J]. 《山东大学学报(理学版)》, 2021, 56(3): 44-53. |
[3] | 唐光远,郭军军,余正涛,张亚飞,高盛祥. 基于BERT与法条知识驱动的法条推荐方法[J]. 《山东大学学报(理学版)》, 2021, 56(11): 24-30. |
[4] | 张一鸣,王国胤,胡军,傅顺. 基于密度峰值和网络嵌入的重叠社区发现[J]. 《山东大学学报(理学版)》, 2021, 56(1): 91-102. |
[5] | 郝长盈,兰艳艳,张海楠,郭嘉丰,徐君,庞亮,程学旗. 基于拓展关键词信息的对话生成模型[J]. 《山东大学学报(理学版)》, 2019, 54(7): 68-76. |
[6] | 张军,李竞飞,张瑞,阮兴茂,张烁. 基于网络有效阻抗的社区发现算法[J]. 山东大学学报(理学版), 2018, 53(3): 24-29. |
[7] | 王鑫,左万利,朱枫彤,王英. 基于重要结点的社区发现算法[J]. 山东大学学报 (理学版), 2018, 53(11): 67-77. |
[8] | 魏思敏,张宪华,张祯,孟庆春,张夏然. 基于复杂网络的虚拟品牌社区意见领袖识别研究——以魅族Flyme社区为例[J]. 《山东大学学报(理学版)》, 2018, 53(11): 26-34. |
[9] | 王亚奇,王静. 考虑好奇心理机制的动态复杂网络谣言传播研究[J]. 山东大学学报(理学版), 2017, 52(6): 99-104. |
[10] | 吴平杰,周斌,吴泉源. COT:一种连续时间序列建模的社区发现算法[J]. 山东大学学报(理学版), 2016, 51(11): 41-49. |
[11] | 孙松涛, 何炎祥, 蔡瑞, 李飞, 贺飞艳. 面向微博情感评测任务的多方法对比研究[J]. 山东大学学报(理学版), 2014, 49(11): 43-50. |
|