山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (3): 24-31.doi: 10.6040/j.issn.1671-9352.2.2016.108
刘龙飞,杨晓元
LIU Long-fei, YANG Xiao-yuan
摘要: 线性复杂度是度量序列随机性的一个重要指标。基于Ding-广义割圆序列,构造了GF(l)上一类新的周期为p3的广义割圆序列(其中l为一奇素数h的幂),且该序列为平衡序列,并通过有限域上的多项式理论确定了该序列的线性复杂度。结果表明,该类序列具有良好的线性复杂度性质,以它们做密钥流序列的密码系统具有抵抗B-M算法攻击的能力。
中图分类号:
[1] DING Cunsheng. Linear complexity of generalized cyclotomic binary sequences of order 2[J]. Finite Fields and Their Applications, 1997, 8:159-174. [2] DING Cunsheng, HELLESETH T. New generalized cyclotomy and its applications[J]. Finite Fields and Their Applications, 1998, 4(2):140-166. [3] CUSICK T W, DING Cunsheng, RENVALL A. Stream Ciphers and Number Theory[M]. Elsevier Science Pub Co, 1998, Chapter 3-8. [4] YAN Tongjiang, HUANG Bingjia, XIAO Guozhen. Cryptographic properties of some binary generalized cyclotomic sequences with the length p2[J]. Information Sciences, 2008, 178(3):1078-1086. [5] KIM Y, JIN S, SONG H. Linear complexity and autocorrelation of prime cube sequences[J]. Applicable Algebra in Engineering, Communication and Computing, 2007, LNCS 4851, 188-197. [6] YAN Tongjiang, LI Shengqiang, XIAO Guozhen. On the linear complexity of generalized cyclotomic sequences with the period pm[J]. Applied Mathematics Letters, 2008, 21(2):187-193. [7] DU Xiaoni, CHEN Zhixiong. Trace representation of binary generalized cyclotomic sequences with length pm[J]. IEICE Transaction on Fundamentals, 2011, E94-A(2):761-765. [8] EDEMSKIY Vladimir. About computation of the linear complexity of generalized cyclotomic sequences with period pn+1[J]. International Journal of Soft Computing and Engineering, 2011, 1(3):2231-2307. [9] WANG Qiuyan, JIANG Yupeng, LIN Dongdai. Linear complexity of binary generalized cyclotomic sequences over GF(q)[J]. Journal of Complexity, 2015, 31(5), 731-740. [10] WANG Qiuyan, JIANG Yupeng, LIN Dongdai. Linear complexity of Ding-Helleseth sequences of order 2 over GF(l)[J]. Cryptography and Communications, 2015, DOI 10,1007/s12095-015-0138-5. [11] FAN Cuiling, GE Gennian. A unified approach to whitemans and ding-helleseths generalized cyclotomy over residue class rings[J]. IEEE Transactions on Information Theory, 2014, 60(2):1326-1336. [12] DING Cunsheng. Cyclic codes from the two primes sequences[J]. IEEE Transactions on Information Theory, 2012, 58(6):3881-3891. [13] DING Cunsheng. Cyclic codes from cyclotomic sequences of order four[J]. Finite Fields and Their Applications, 2013, 23(1):8-34. [14] ZENG Xiangyong, CAI Han, TANG Xiaohu, et al. Optimal frequency Hopping sequences of odd length[J]. IEEE Transactions on Information Theory, 2013, 59(5):3237-3248. [15] CAI Han, ZHOU Zhengchun, YANG Yang, et al. A New construction of frequency-hopping sequences optimal partial hamming correlation[J]. IEEE Transactions on Information Theory, 2014, 60(9):5782-5790. [16] CAI Han, LIANG Hongbin, TANG Xiaohu. Constructions of optimal 2-D optical orthogonal codes via generalized cyclotomic classes[J]. IEEE Transactions on Information Theory, 2015, 61(1):688-695. |
[1] | 王国辉, 杜小妮, 万韫琦, 李芝霞. 周期为pq的平衡四元广义分圆序列的线性复杂度[J]. 山东大学学报(理学版), 2016, 51(9): 145-150. |
[2] | 张方国. 椭圆曲线在密码中的应用:过去,现在,将来…[J]. J4, 2013, 48(05): 1-13. |
[3] | 巨春飞1,仇晓涛2,王保仓2,3. 基于矩阵环的快速公钥密码算法[J]. J4, 2012, 47(9): 56-59. |
[4] | 关杰, 张应杰. “与常数模2n加”运算的不可能差分性质研究[J]. J4, 2010, 45(11): 47-51. |
[5] | 王锦玲 兰娟丽. GF(q)上一类新型的广义自缩序列[J]. J4, 2009, 44(10): 91-96. |
[6] | 王锦玲,刘宗成 . 主控生成器[J]. J4, 2008, 43(1): 81-87 . |
[7] | 于静之,张文英,刘祥忠 . 根据连续2n-1个状态写出单圈T函数ANF的方法[J]. J4, 2007, 42(4): 14-18 . |
|