山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (1): 38-45.doi: 10.6040/j.issn.1671-9352.2.2017.196
谭韧,殷肖川*,焦贤龙,廉哲,陈玉鑫
TAN Ren, YIN Xiao-chuan*, JIAO Xian-long, LIAN Zhe, CHEN Yu-xin
摘要: 针对传统网络架构的确定性、静态性和同构性造成APT攻击难以有效防御的问题,提出了一种软件定义APT攻击移动目标防御网络架构SDMTDA。对APT攻击行为进行了建模,总结了APT攻击依赖网络结构和漏洞信息的特点;结合软件定义安全理念建立了从下到上分别为物理层、控制层、应用层的三层网络架构,并给出了网络结构变化和漏洞信息变化的算法,分析了移动目标防御的三种方法在SDMTDA中的实现;对架构进行了分析、实现并测试。实验结果表明,该架构具有软件定义、变化迅速、扩展性强的优点。
中图分类号:
[1] LANGNER R. Stuxnet: dissecting a cyberwarfare weapon[J]. IEEE Security & Privacy: IEEE Secur Priv, 2011, 9(3):49-51. [2] BENCSÁTH B, PÉK G, BUTTYÁN L, et al. The cousins of stuxnet: Duqu, flame, and gauss[J]. Future Internet, 2012, 4(4):971-1003. [3] Kaspersky Labs Global Research & Analysis Team. WannaCry ransomware used in widespread attacks all over the world[EB/OL].(2017-5-12)[2017-5-17]. https://securelist.com/blog/incidents/78351/wannacry-ransomware-used-in-widespread-attacks-all-over-the-world/. [4] CAI Guiling, WANG Baosheng, HU Wei, et al. Moving target defense: state of the art and characteristics[J]. Frontiers of Information Technology & Electronic Engineering: Front Inform Technol Elect Eng, 2016, 17(11):1122-1153. [5] JAJODIA S, GHOSH A K, SWARUP V, et al. Moving target defense: creating asymmetric uncertainty for cyber threats[M]. New York: Springer Science & Business Media, 2011. [6] HUTCHINS E M, CLOPPERT M J, AMIN R M. Intelligence-driven computer network defense informed by analysis of adversary campaigns and intrusion kill chains[J]. Leading Issues in Information Warfare & Security Research, 2011, 1(1):80. [7] LI Meicong, HUANG Wei, WANG Yongbin, et al. The study of APT attack stage model[C] // 2016 IEEE/ACIS 15th International Conference on Computer and Information Science(ICIS). Okayama, Japan: IEEE, 2016: 1-5. [8] CHOI J, CHOI C, LYNN H M, et al. Ontology based APT attack behavior analysis in cloud computing[C] // 2015 10th International Conference on Broadband and Wireless Computing, Communication and Applications(BWCCA). Krakow, Poland: IEEE, 2015: 375-379. [9] IOANNOU G, LOUVIERIS P, CLEWLEY N, et al. A Markov multi-phase transferable belief model: an application for predicting data exfiltration APTs[C] // Proceedings of the 16th International Conference on Information Fusion. Turkey: IEEE, 2013: 842-849. [10] FANG Xupeng, ZHAI Lidong, JIA Zhaopeng, et al. A game model for predicting the attack path of APT[C] // 2014 IEEE 12th International Conference on Dependable, Autonomic and Secure Computing. Dalian, China: IEEE, 2014: 491-495. [11] YANG Haopu. Method for behavior-prediction of APT attack based on dynamic Bayesian game[C] // 2016 IEEE International Conference on Cloud Computing and Big Data Analysis(ICCCBDA). Chengdu, China: IEEE, 2016: 177-182. [12] KIM Y H, PARK W H. A study on cyber threat prediction based on intrusion detection event for APT attack detection[J]. Multimedia Tools and Applications: Multimed Tools Appl, 2014, 71(2):685-698. [13] MANADHATA P K,WING J M. An attack surface metric[J]. IEEE Transactions on Software Engineering, 2011, 37(3):371-386. [14] HONG J B, KIM D S. Assessing the effectiveness of moving target defenses using security models[J]. IEEE Transactions on Dependable and Secure Computing, 2016, 13(2):163-177. [15] KREUTZ D, RAMOS F M V, VERISSIMO P E, et al. Software-defined networking: a comprehensive survey[J]. Proceedings of the IEEE, 2015, 103(1):14-76. [16] BERNSTEIN D. Containers and cloud: from LXC to docker to kubernetes[J]. IEEE Cloud Computing, 2014, 1(3):81-84. [17] JAFARIAN J H, AL-SHAER E, DUAN Q. Openflow random host mutation: transparent moving target defense using software defined networking[C] // Proceedings of the 1st Workshop on Hot Topics in Software Defined Networks. Helsinki, Finland: ACM, 2012: 127-132. [18] WANG Li, WU Dinghao. Moving target defense against network reconnaissance with software defined networking[M] // BISHOP M, NASCIMENTO A C A. Information Security: Lecture Notes in Computer Science.Cham:Springer Int Publishing Ag, 2016: 203-217. [19] CHIN T, XIONG Kaiqi. Dynamic generation containment systems(DGCS): a moving target defense approach[C] // 2016 3rd International Workshop on Emerging Ideas and Trends in Engineering of Cyber-Physical Systems(EITEC). Vienna, Austria: IEEE, 2016: 11-16. [20] AZAB M, ELTOWEISSY M. MIGRATE: Towards a Lightweight Moving-Target Defense Against Cloud Side-Channels[C] // 2016 IEEE Security and Privacy Workshops(SPW)San Jose. California, USA: IEEE, 2016: 96-103. [21] LIU Yanbing, LU Xingyu, YI Jian, et al. SDSA: a framework of a software-defined security architecture[J]. China Communications, 2016, 13(2):178-188. [22] DARABSEH A, AL-AYYOUB M, JARARWEH Y, et al. SDSecurity: a software defined security experimental framework[C] // 2015 IEEE International Conference on Communication Workshop(ICCW).[S.l.] : IEEE, 2015: 1871-1876. [23] 谭韧, 殷肖川, 廉哲, 等. APT攻击分层表示模型[J]. 计算机应用, 2017, 37(9):2551-2556. TAN Ren, YIN Xiaochuan, LIAN Zhe, et al. Hierarchical representation model of APT attack[J]. Journal of Computer Applications, 2017, 37(9):2551-2556. [24] CRIU Project. CRIU[EB/OL].(2017-9-21)[2017-9-21]. https://criu.org/Main_Page. [25] PICKARTZ S, EILING N, LANKES S, et al. Migrating linux containers using CRIU[M] // TAUFER M, MOHR B, KUNKEL J M. High Performance Computing: ISC High Performance 2016 International Workshops. Cham: Springer International Publishing, 2016: 674-684. [26] BEN-ASHER N, MORRIS-KING J, THOMPSON B, et al. Attacker skill defender strategies and the effectiveness of migration-based moving target defense in cyber systems[C] // 11th International Conference on Cyber Warfare and Security: ICCWS2016. Boston, US: Academic Conferences and Publishing Limited, 2016: 21. [27] WETTE P, DRÄXLER M, SCHWABE A. MaxiNet: distributed emulation of software-defined networks[C] // 2014 IFIP Networking Conference. Trondheim, Norway: IEEE, 2014: 1-9. [28] Linux Fundation. The OpenDaylight Platform | OpenDaylight[EB/OL].(2017-5-12)[2017-10-1]. https://www.opendaylight.org/. |
[1] | 晏燕,郝晓弘. 差分隐私密度自适应网格划分发布方法[J]. 山东大学学报(理学版), 2018, 53(9): 12-22. |
[2] | 焦鸿儒,秦静. 可实现全部超星量子存取结构的量子秘密共享方案[J]. 山东大学学报(理学版), 2018, 53(9): 62-68. |
[3] | 许力冬,王明强. 对10轮AES-128的中间相遇攻击[J]. 山东大学学报(理学版), 2018, 53(7): 39-45. |
[4] | 张建标,李志刚,刘国杰,王超,王玮. 面向Windows环境进程主动动态度量方法[J]. 山东大学学报(理学版), 2018, 53(7): 46-50. |
[5] | 崔朝阳,孙甲琦,徐松艳,蒋鑫. 适用于集群无人机的自组网安全分簇算法[J]. 山东大学学报(理学版), 2018, 53(7): 51-59. |
[6] | 刘政,牛芳琳,钱大兴,蔡希彪,郭颖. 基于喷泉码的防窃听编码设计[J]. 山东大学学报(理学版), 2018, 53(7): 60-64. |
[7] | 刘明明,张敏情,刘佳,高培贤. 一种基于浅层卷积神经网络的隐写分析方法[J]. 山东大学学报(理学版), 2018, 53(3): 63-70. |
[8] | 阮树骅,瓮俊昊,毛麾,陈雪莲. 云安全风险评估度量模型[J]. 山东大学学报(理学版), 2018, 53(3): 71-76. |
[9] | 康海燕,黄渝轩,陈楚翘. 基于视频分析的地理信息隐私保护方法[J]. 山东大学学报(理学版), 2018, 53(1): 19-29. |
[10] | 孟博,鲁金钿,王德军,何旭东. 安全协议实施安全性分析综述[J]. 山东大学学报(理学版), 2018, 53(1): 1-18. |
[11] | 孙泽锐,王继军,李国祥,夏国恩. 基于插值图像的可逆信息隐藏算法[J]. 山东大学学报(理学版), 2018, 53(1): 46-52. |
[12] | 孙亮,陈小春,钟阳,林志鹏,任彤. 基于可信BMC的服务器安全启动机制[J]. 山东大学学报(理学版), 2018, 53(1): 89-94. |
[13] | 姚克,朱斌瑞,秦静. 基于生物信息的可验证公钥可搜索加密协议[J]. 山东大学学报(理学版), 2017, 52(11): 11-22. |
[14] | 韩盼盼,秦静. 云计算中可验证的外包数据库加密搜索方案[J]. 山东大学学报(理学版), 2017, 52(9): 41-53. |
[15] | 丁义涛,杨海滨,杨晓元,周潭平. 一种同态密文域可逆隐藏方案[J]. 山东大学学报(理学版), 2017, 52(7): 104-110. |
|