您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (5): 88-94.doi: 10.6040/j.issn.1671-9352.2.2019.156

• • 上一篇    

基于时序和TOPSIS的社交网络节点重要性评价算法

贾汉,韩益亮*,吴旭光   

  1. 武警工程大学密码工程学院, 陕西 西安 710086
  • 发布日期:2020-05-06
  • 作者简介:贾汉(1992— ),男,硕士研究生,研究方向为舆情分析、社交网络. E-mail:1183717644@qq.com*通信作者简介:韩益亮(1977— ),男,博士,教授,研究方向为密码学、网络安全. E-mail:hanyil@163.com
  • 基金资助:
    国家自然科学基金资助项目(61572521);军事科学研究计划课题基金资助项目(16QJ003-097);武警工程大学创新团队科学基金资助(KYTD201805)

Importance evaluation algorithm of dynamic nodes in social networks based on time series and TOPSIS

JIA Han, HAN Yi-liang*, WU Xu-guang   

  1. College of Cryptography Engineering, Engineering University of PAP, Xian 710086, Shaanxi, China
  • Published:2020-05-06

摘要: 针对社交网络随时间在不断复杂变化的实际情况,在采用TOPSIS算法的基础上,引入时间作为考量因素,设计了节点、节点属性和时序的综合评价算法。采用Facebook连续28个月的数据集,以7个月为一阶段,划分为4个时间段,以变化时间先后为序,进行算法的验证,并与TOPSIS算法的结果进行比较。实验结果表明,本文算法综合考虑了每段时间内的节点重要性,评价出的结果更符合节点动态变化的实际,且具有更高的准确性。

关键词: 社交网络, 动态节点, 时序和TOPSIS, 重要性评价算法

Abstract: Aiming at the fact that social networks are constantly changing with time, the consideration factor of time is introduced, based on the TOPSIS algorithm, and a comprehensive evaluation algorithm for node, node properties and time series is designed. Using Facebooks 28-month data set, it is divided into four time periods with 7 months as a stage, and the algorithm is verified in order of change time, and compared with the results of TOPSIS algorithm. The experimental results show that the proposed algorithm takes the importance of the nodes in each period of time into account, and the evaluation results are more in line with the actual dynamics of the nodes and have higher accuracy.

Key words: social network, dynamic node, time series and TOPSIS, importance evaluation algorithm

中图分类号: 

  • TP393.09
[1] ZANETTE D H. Dynamics of rumor propagation on small-world networks[J]. Physical Review E, 2002, 65(4):041908.
[2] 周漩, 张凤鸣, 李克武, 等. 利用重要度评价矩阵确定复杂网络关键节点[J]. 物理学报, 2012, 61(5):1-7. ZHOU Xuan, ZHANG Fengming, LI Kewu, et al. Finding vital node by node importance evaluation matrix in complex networks[J]. Acta Physica Sinica, 2012, 61(5):1-7.
[3] FREEMAN L C. Centrality in social networks conceptual clarification[J]. Social Networks, 1978, 1(3):215-239.
[4] BRANDES U. A faster algorithm for betweenness centrality[J]. The Journal of Mathematical Sociology, 2001, 25(2):163-177.
[5] 武澎, 王恒山. 基于特征向量中心性的社交信息超网络中重要节点的评判[J]. 情报理论与实践, 2014, 37(5):107-113. WU Peng,WANG Hengshan. Evaluation of key nodes of social information super-network based on eigenvector centrality[J]. Information Studies(Theory & Application), 2014, 37(5):107-113.
[6] 郭晓成, 马润年, 王刚. 复杂网络中节点重要性综合评价方法研究[J]. 计算机仿真, 2017, 34(7):264-268. GUO Xiaocheng, MA Runnian, WANG Gang. Research on comprehensive evaluation method of node importance in complex network[J]. Computer Simulation, 2017, 34(7):264-268.
[7] 于会, 刘尊, 李勇军. 基于多属性决策的复杂网络节点重要性综合评价方法[J]. 物理学报, 2013, 62(2):46-54. YU Hui, LIU Zun, LI Yongjun. Key nodes in complex networks identified by multi-attribute decision-making method[J]. Acta Physica Sinica, 2013, 62(2):46-54.
[8] 邓冬梅. 时序网络结构特性实证分析及研究[D]. 成都:电子科技大学, 2014. DENG Dongmei. The structure characteristics empirical analysis and research in temporal network[D]. Chengdu: University of Electronic Science and Technology of China, 2014.
[9] QI X Q, DUVAL R D, CHRISTENSEN K, et al. Terrorist networks, network energy and node removal: a new measure of centrality based on laplacian energy[J]. Social Networking, 2013, 2(1):19-31.
[1] 张超,梁英,方浩汕. 支持隐私保护的社交网络信息推荐方法[J]. 《山东大学学报(理学版)》, 2020, 55(3): 9-18.
[2] 谢小杰,梁英,董祥祥. 社交网络用户敏感属性迭代识别方法[J]. 《山东大学学报(理学版)》, 2019, 54(3): 10-17, 27.
[3] 张中军,张文娟,于来行,李润川. 基于网络距离和内容相似度的微博社交网络社区划分方法[J]. 山东大学学报(理学版), 2017, 52(7): 97-103.
[4] 邓小方,钟元生,吕琳媛,王明文,熊乃学. 融合社交网络的物质扩散推荐算法[J]. 山东大学学报(理学版), 2017, 52(3): 51-59.
[5] 祝升,周斌,朱湘. 综合用户相似性与话题时效性的影响力用户发现算法[J]. 山东大学学报(理学版), 2016, 51(9): 113-120.
[6] 李宇溪,王恺璇,林慕清,周福才. 基于匿名广播加密的P2P社交网络隐私保护系统[J]. 山东大学学报(理学版), 2016, 51(9): 84-91.
[7] 张少群,魏晶晶,廖祥文,简思远,陈国龙. Twitter中的情绪传染现象[J]. 山东大学学报(理学版), 2016, 51(1): 71-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!