您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (11): 74-80.doi: 10.6040/j.issn.1671-9352.3.2014.095

• 论文 • 上一篇    下一篇

基于浅层语义分析的主题事件的时间识别

李风环, 郑德权, 赵铁军   

  1. 哈尔滨工业大学计算机科学与技术学院, 黑龙江 哈尔滨 150001
  • 收稿日期:2015-03-03 修回日期:2015-04-21 出版日期:2015-11-20 发布日期:2015-12-09
  • 通讯作者: 郑德权(1968-),男,博士,副教授,研究方向为信息抽取、知识工程、自然语言处理.E-mail:dqzheng2007@gmail.com E-mail:dqzheng2007@gmail.com
  • 作者简介:李风环(1985-),女,博士,研究方向为事件抽取、时序分析、数据挖掘、自然语言处理.E-mail:finelee2012@gmail.com
  • 基金资助:
    国家自然科学基金资助项目(61402134);国家国际科技合作专项(2014DFA11350)

Temporal recognition for topic event based on shallow semantic parsing

LI Feng-huan, ZHENG De-quan, ZHAO Tie-jun   

  1. School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
  • Received:2015-03-03 Revised:2015-04-21 Online:2015-11-20 Published:2015-12-09

摘要: 时间识别是自然语言处理中极其重要的课题。事件中与主题相关的时间信息体现了事件在时间维度的主题特征。当前面向事件的时间识别大多是基于句子或短语的,并采用静态时间值机制。本文提出了一个面向主题事件的时间识别模型。该模型采用参考时间动态选择机制对时间表达式规范化。结合事件抽取和浅层语义分析,将浅层语义分析结果和时间表达式进行映射,将基于句子或短语的时间识别转化为基于篇章的时间识别,从而识别主题事件片段的时间。实验表明所提出的方法使主题事件片段的时间识别的性能提高了9.6%。

关键词: 时间识别, 事件抽取, 浅层语义分析, 主题事件, 动态

Abstract: Temporal recognition is a key subject in natural language processing community. The topic-related temporal information reflects the topic feature of topic events on temporal dimensionality. Most temporal recognition for events was sentence-oriented or phrase-oriented and employed static time-value machine. A temporal recogtion model for topic events was proposed in this paper. Temporal expressions were normalized with reference time dynamic-choosing mechanism in this model. Combining event extraction and shallow semantic parsing, semantic roles were mapped to temporal expressions. Document-oriented temporal recognition was implemented using sentence-oriented or phrase-oriented temporal recognition, consequently, temporal recognition for topic event segments was realized. Results show that performances of temporal recognition for topic event segments are improved by 9.6%.

Key words: topic event, event extraction, shallow semantic parsing, dynamic, temporal recognition

中图分类号: 

  • TP391
[1] LINGUISTIC D C. ACE (Automatic content extraction) Chinese annotation guidelines for events[S].Version 5.5.1. 2005. https://www.ldc.upenn.edu/Projects/ACE/.
[2] BERBERICH K, BEDATHUR S, ALONSO O, et al. A language modeling approach for temporal information needs[C]//Proceedings of the 32nd European Conference on Information Retrieval. Berlin:Springer-Verlag, 2010:13-25.
[3] LI Xiaowen, JIN Peiquan, ZHAO Xujian, et al. NTLM:a time-enhanced language model based ranking approach for web search[C]//Proceedings of Workshops on Web Information Systems Engineering. Berlin:Springer-Verlag, 2010:156-170.
[4] LIN Sheng, JIN Peiquan, ZHAO Xujian, et al. Exploiting temporal information in Web search[J]. Expert Systems with Applications, 2014, 41(2):331-341.
[5] 赵华. 话题检测与跟踪关键技术研究[D]. 哈尔滨:哈尔滨工业大学, 2008. ZHAO Hua. Research on topic detection and tracking[D].Harbin:Harbin Institute of Technology, 2008.
[6] HE D, STOTT P D. Topic dynamics:an alternative model of 'bursts' in stream of topics[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2010:443-452.
[7] ZHAO Xujian, JIN Peiquan, YUE Lihua. Automatic temporal expression normalization with reference time dynamic-choosing[C]//Proceedings of the 23rd International Conference on Computational Linguistics. Stroudsburg:Association for Computational Linguistics, 2010:1498-1506.
[8] 贺瑞芳,秦兵,刘挺,等. 基于依存分析和错误驱动的中文时间表达式识别[J]. 中文信息学报, 2007, 21(5):36-40. HE Ruifang, QIN Bing, LIU Ting, et al. Recognizing the extent of Chinese time expressions based on the dependency parsing and error-driven learning[J]. Journal of Chinese Information Processing, 2007, 21(5):36-40.
[9] 赵旭剑,金培权,岳丽华. TTP:一个面向中文新闻网页的主题时间解析器[J],小型微型计算机系统,2013,34(5):1042-1049. ZHAO Xujian, JIN Peiquan, YUE Lihua. TTP:a topic time parser on Chinese news from Internet[J]. Journal of Chinese Computer Systems, 2013, 34(5):1042-1049.
[10] KANHABUA N, NRVAG K. Determining time of queries for re-ranking search results[C]//Proceedings of the 4th European Conference on Research and Advanced Technology for Digital Libraries. Berlin:Springer-Verlag, 2010:261-272.
[11] MELLI G, SHI Z G, WANG Y, et al. Description of squash, the sfu question answering summary handler for the Duc-2006 summarization task[C]//Proceedings of the Document Understanding Conference. Gaithersburg:NIST, 2006.
[12] TRANG D H, PALMER M. The role of semantic roles in disambiguating verb senses[C]//Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics. Stroudsburg:Association for Computational Linguistics, 2005:42-49.
[13] BILOTTI M W, OGILVIE P, CALLAN J, et al. Structured retrieval for question answering[C]//Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM, 2007:351-358.
[14] NARAYANAN S, HARBABAGIU S. Question answering based on semantic structures[C]//Proceedings of the 20th international conference on Computational Linguistics. Stroudsburg:Association for Computational Linguistics, 2004.
[15] ATHENIKOS S J, HAN H. Biomedical question answering:a survey[J]. Computer Methods and Programs in Biomedicine, 2010, 99(1):1-24.
[16] HAJIC J, CMEJREK M, DORR B, et a1. Natural language generation in the context of machine translation[R]. Maryland:USA Center for Language and Speech Processing, 2004.
[17] BETHARD S, LU Z Y, MARTIN J H, et al. Semantic role labeling for protein transport predicates[J]. BMC Bioinformatics, 2008, 9:277.
[18] SURDEANU M, HARABAGIU S, WILLIAMS J, et al. Using predicate-argument structures for information extraction[C]//Proceedings of the 41st Annual Meeting on Association for Computational Linguistics. Stroudsburg:Association for Computational Linguistics, 2003:8-15.
[19] UZZAMAN N, ALLEN J F. Extracting events and temporal expressions from text[C]//Proceedings of IEEE the 4th International Conference on Semantic Computing. Piscataway, NJ:IEEE, 2010.
[20] RUPPENHOFER J, SPORLEDER C, MORANTE R. SemEval-2010 task 10:Linking events and their participants in discourse[C]//Proceedings of the 5th International Workshop on Semantic Evaluation. Stroudsburg:Association for Computational Linguistics, 2010:45-50.
[21] DAS D, SCHNEIDER N, CHEN D, et al. Probabilistic frame-semantic parsing[C]//Proceedings of Human Language Technologies:The Annual Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg:Association for Computational Linguistics, 2010:948-956.
[22] EXNER P, NUGUES P. Using semantic role labeling to extract events from wikipedia[C]//Proceedings of the Workshop on Detection, Representation, and Exploitation of Events in the Semantic Web. USA:The Pennsylvania State University, 2011:38-47.
[23] LI Shiqi, LU Qin, ZHAO Tiejun, et al. Combining constituent and dependency syntactic views for Chinese semantic role labeling[C]//Proceedings of the 23rd International Conference on Computational Linguistics. Stroudsburg:Association for Computational Linguistics, 2010:665-673.
[24] LEVY R, MANNING C D. Is it harder to parse Chinese, or the Chinese treebank?[C]//Proceedings of the 41st Annual Meeting on Association for Computational Linguistics. Stroudsburg:Association for Computational Linguistics, 2003:439-446.
[25] 金璐钰. 基于框架的事件抽取关键技术研究[D]. 苏州:苏州大学,2010. JIN Luyu. Research on key technology of event extraction based on frame[D]. Suzhou:Suzhou University, 2010.
[1] 李美娟,刘媛,徐林明,吴飞美. 基于Football的动态组合评价方法[J]. 山东大学学报(理学版), 2018, 53(5): 88-94.
[2] 陈保会,张凌,史开泉. P-信息智能动态融合与信息规律状态智能识别[J]. 山东大学学报(理学版), 2018, 53(2): 83-87.
[3] 韩盼盼,秦静. 云计算中可验证的外包数据库加密搜索方案[J]. 山东大学学报(理学版), 2017, 52(9): 41-53.
[4] 黄桃林,牛娇娇,李金海. 基于粒辨识属性矩阵的动态形式背景约简更新方法[J]. 山东大学学报(理学版), 2017, 52(7): 13-21.
[5] 杨明国,王桂新. 中国碳排放动态演进的区域差异及其影响因素——来自省际面板数据的经验证据[J]. 山东大学学报(理学版), 2017, 52(6): 16-23.
[6] 黄宇晴,赵波,肖钰,陶威. 一种基于KVM的vTPM虚拟机动态迁移方案[J]. 山东大学学报(理学版), 2017, 52(6): 69-75.
[7] 赵丹丹,陈兴蜀,金鑫. KVM Hypervisor安全能力增强技术研究[J]. 山东大学学报(理学版), 2017, 52(3): 38-43.
[8] 屈娟,李艳平. 基于动态身份的远程用户认证方案[J]. 山东大学学报(理学版), 2017, 52(1): 37-42.
[9] 戴忠华,费永康,赵波,王婷. 基于污点跟踪的固件漏洞定位研究[J]. 山东大学学报(理学版), 2016, 51(9): 41-46.
[10] 林丽. 基于核心依存图的新闻事件抽取[J]. 山东大学学报(理学版), 2016, 51(9): 121-126.
[11] 郭华龙,任雪芳,张凌. 数据的动态挖掘与P-增广矩阵关系[J]. 山东大学学报(理学版), 2016, 51(8): 105-110.
[12] 聂天洋,史敬涛. 完全耦合正倒向随机控制系统的动态规划原理与最大值原理之间的联系[J]. 山东大学学报(理学版), 2016, 51(5): 121-129.
[13] 万智萍. 一种混合Das协议的无线传感器网络身份验证协议[J]. 山东大学学报(理学版), 2015, 50(05): 12-17.
[14] 蒋伟进, 许宇晖, 郭宏, 许宇胜. 基于多智能体的多维证据动态信任计算模型[J]. 山东大学学报(理学版), 2015, 50(01): 1-11.
[15] 徐霞, 李培峰, 郑新, 朱巧明. 面向半监督中文事件抽取的事件推理方法[J]. 山东大学学报(理学版), 2014, 49(12): 12-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!