《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (1): 83-90.doi: 10.6040/j.issn.1671-9352.4.2020.131
摘要:
提出了一种基于改进的长短时记忆神经网络(Arc-LSTM)和词嵌入(Word2Vec)模型相结合的自动匹配方法。首先采用连续词袋(continuous bag of words, CBOW)模型提取中文简历文本特征, 从而构建词向量, 提出一种基于ArcReLU激活函数和LSTM深度神经网络优化的Arc-LSTM网络, 利用该网络构建分类模型, 实现文本分类。实验证明, 提出的模型能有效地提高分类精度和收敛速度, 实现中文简历和职位的精准匹配。
中图分类号:
1 | KATZ B, LIN J. Selectively using relations to improve precision in question answering[C]//Proceedings of the EACL-2003 Workshop on Natural Language Processing for Question Answering. Budapest: EACL, 2003: 43-50. |
2 | 朱倩, 程显毅, 韩飞. 汉语句子语义三维表示模型[J]. 智能系统学报, 2009, 4 (2): 122- 130. |
ZHU Qian , CHENG Xianyi , HAN Fei . A three-dimensional representative model of Chinese sentence semantics[J]. CAAI Transactions on Intelligent Systems, 2009, 4 (2): 122- 130. | |
3 | 张宜浩, 朱小飞, 徐传运, 等. 基于用户评论的深度情感分析和多视图协同融合的混合推荐方法[J]. 计算机学报, 2019, 42 (6): 1316- 1333. |
ZHANG Yihao , ZHU Xiaofei , XU Chuanyun , et al. Hybrid recommendation approach based on deep sentiment analysis of user reviews and multi-view collaborative fusion[J]. Chinese Journal of Computers, 2019, 42 (6): 1316- 1333. | |
4 | GULCEHRE C, MOCZULSKI M, DENIL M, et al. Noisy activation functions[C]//Proceedings of the 33rd International Conference on Machine Learning. New York: ICML, 2016. |
5 | GOMAR S, MIRHASSANI M, AHMADI M. Precise digital implementations of hyperbolic tanh and sigmoid function[C]//Conference on Signals, Systems & Computers. Alberta: IEEE, 2016: 1586-1589. |
6 | 廖祥文, 陈泽泽, 桂林, 等. 基于多任务迭代学习的论辩挖掘方法[J]. 计算机学报, 2019, 42 (7): 1524- 1538. |
LIAO Xiangwen , CHEN Zeze , GUI Lin , et al. An argumentation mining method based on multi-task iterative learning[J]. Chinese Journal of Computers, 2019, 42 (7): 1524- 1538. | |
7 | 许赟杰, 徐菲菲. 基于ArcReLU函数的神经网络激活函数优化研究[J]. 数据采集与处理, 2019, 34 (3): 517- 529. |
XU Yunjie , XU Feifei . Optimization of activation function in neural network based on ArcReLU function[J]. Journal of Data Acquisition & Processing, 2019, 34 (3): 517- 529. | |
8 |
WU H . Global stability analysis of a general class of discontinuous neural networks with linear growth activation functions[J]. Information Sciences, 2009, 179 (19): 3432- 3441.
doi: 10.1016/j.ins.2009.06.006 |
9 |
李亚超, 熊德意, 张民. 神经机器翻译综述[J]. 计算机学报, 2018, 41 (12): 2734- 2755.
doi: 10.11897/SP.J.1016.2018.02734 |
LI Yachao , XIONG Deyi , ZHANG Min . A survey of neural machine translation[J]. Chinese Journal of Computers, 2018, 41 (12): 2734- 2755.
doi: 10.11897/SP.J.1016.2018.02734 |
|
10 | 陈建廷, 向阳. 深度神经网络训练中梯度不稳定现象研究综述[J]. 软件学报, 2018, 29 (7): 2071- 2091. |
CHEN Jianting , XIANG Yang . Survey of unstable gradients in deep neural network training[J]. Journal of Software, 2018, 29 (7): 2071- 2091. |
[1] | 郝长盈,兰艳艳,张海楠,郭嘉丰,徐君,庞亮,程学旗. 基于拓展关键词信息的对话生成模型[J]. 《山东大学学报(理学版)》, 2019, 54(7): 68-76. |
[2] | 刘飚,路哲,黄雨薇,焦萌,李泉其,薛瑞. 神经网络结构在功耗分析中的性能对比[J]. 《山东大学学报(理学版)》, 2019, 54(1): 60-66. |
[3] | 刘明明,张敏情,刘佳,高培贤. 一种基于浅层卷积神经网络的隐写分析方法[J]. 山东大学学报(理学版), 2018, 53(3): 63-70. |
[4] | 庞博,刘远超. 融合pointwise及深度学习方法的篇章排序[J]. 山东大学学报(理学版), 2018, 53(3): 30-35. |
[5] | 刘铭, 昝红英, 原慧斌. 基于SVM与RNN的文本情感关键句判定与抽取[J]. 山东大学学报(理学版), 2014, 49(11): 68-73. |
|