您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2026, Vol. 61 ›› Issue (1): 49-64.doi: 10.6040/j.issn.1671-9352.4.2025.004

• • 上一篇    

基于知识度量的模糊粗糙c-均值算法

李文焱1,李丽红1,2,3*,王洪欣1   

  1. 1.华北理工大学理学院, 河北 唐山 063210;2.河北省数据科学与应用重点实验室, 河北 唐山 063210;3.唐山市数据科学重点实验室, 河北 唐山 063210
  • 发布日期:2026-01-15
  • 通讯作者: 李丽红(1979— ),女,教授,硕士,研究方向为数据挖掘和三支决策研究. E-mail:22687426@qq.com
  • 作者简介:李文焱(1999— ),女,硕士研究生,研究方向为数据挖掘和三支决策研究. E-mail:1375339465@qq.com*通信作者:李丽红(1979— ),女,教授,硕士,研究方向为数据挖掘和三支决策研究. E-mail:22687426@qq.com
  • 基金资助:
    唐山市基础研究项目(24130202C)

Fuzzy rough c-means based on the knowledge measure

  1. 1. School of Science, North China University of Science and Technology, Tangshan 063210, Hebei, China;
    2. Hebei Key Laboratory of Data Science and Application, Tangshan 063210, Hebei, China;
    3. Tangshan Key Laboratory of Data Science, Tangshan 063210, Hebei, China
  • Published:2026-01-15

摘要: 提出基于知识度量的模糊粗糙c-均值聚类(fuzzy rough c-means based on the knowledge measure, KFRCM)算法。传统聚类算法在处理具有模糊边界的数据时存在一定的局限性,表现为对初始聚类中心较为敏感且在高维空间中效率较低。为解决上述问题,引入特征加权的知识度量,结合模糊隶属度函数与粗糙集近似算子,采用高斯核相似度以增强边界特性。实验采用14个数据集,实验结果表明,KFRCM算法的聚类准确性、稳定性和计算效率均优于6种主流聚类算法。该研究首次将知识度量与模糊粗糙聚类相结合,为开发更为可靠和适应性更强的聚类算法提供了新的思路和算法。

关键词: 模糊粗糙集, 知识度量, 聚类分析, 高斯核函数, 上下近似集

Abstract: A knowledge-based fuzzy rough c-means clustering method(KFRCM)is introduced. Traditional clustering methods have limitations in handling data with fuzzy boundaries, which are sensitive to the initial cluster centers, and exhibit low efficiency in high-dimensional spaces. To address these issues, the KFRCM is proposed. a feature-weighted knowledge measure is incorporated, fuzzy membership functions are integrated with rough set approximation operators, and Gaussian kernel similarity is utilized to enhance boundary characterization. Experimental results on 14 datasets demonstrate that the proposed KFRCM algorithm outperforms 6 mainstream clustering algorithms in terms of accuracy, stability, and computational efficiency. This study is recognized as the first integration of knowledge measurement with fuzzy rough clustering, offering a new perspective and an advanced algorithmic framework for developing more reliable and adaptable clustering techniques.

Key words: fuzzy rough sets, knowledge measurement, clustering analysis, gaussian kernel function, upper and lower approximation sets

中图分类号: 

  • TP391
[1] IKOTUN A M, EZUGWU A E, ABUALIGAH L, et al. k-means clustering algorithms: a comprehensive review, variants analysis, and advances in the era of big data[J]. Information Sciences, 2023, 622:178-210.
[2] D'ANDRADE R G. U-statistic hierarchical clustering[J]. Psychometrika, 1978, 43(1):59-67.
[3] BEZDEK J C. Patternrecognition with fuzzy objective function algorithms[J]. Advanced Applications in Pattern Recognition,1981, 22(1171):203-239.
[4] MIRKIN B. Mathematical classification and clustering[M]. New York: Springer, 2013:3-7.
[5] HORNG Y J, CHEN S M, CHANG Y C, et al. A new method for fuzzy information retrieval based on fuzzy hierarchical clustering and fuzzy inference techniques[J]. IEEE Transactions on Fuzzy Systems, 2005, 13(2):216-228
[6] QUINTANA F J, GETZ G, HED G, et al. Cluster analysis of human autoantibody reactivities in health and in type 1 diabetes mellitus: a bioinformatic approach to immune complexity[J]. Autoimmunity, 2003, 21(1):65-75.
[7] GENTHER H, GLESNER M. Advanced data preprocessing using fuzzy clustering techniques[J]. Fuzzy Sets and Systems, 1997, 85(2):155-164.
[8] QIAO Xiaoguang, CHEN Caikou, WANG Weiye. Efficient subspace clustering and feature extraction vial l-norm and l-norm minimization[J]. Neurocomputing, 2024, 595:127813.
[9] CHOI S, YOON S. Change-point model-based clustering for urban building energy analysis[J]. Renewable and Sustainable Energy Reviews, 2024, 199:114514.
[10] SCHAFFER M, VERA-VALDÉS J E, MARSZAL-POMIANOWSKA A, et al. Exploring smart heat meter data: a co-clustering driven approach to analyse the energy use of single-family houses[J]. Applied Energy, 2024, 371:123586.
[11] GÓMEZ-FLORES W, HERNÁNDEZ-LÓPEZ J. Automatic adjustment of the pulse-coupled neural network hyperparameters based on differential evolution and cluster validity index for image segmentation[J]. Applied Soft Computing, 2020, 97:105547.
[12] LIAO Jiyong, WU Xingjiao, WU Yaxin, et al. K-NNDP: k-means algorithm based on nearest neighbor density peak optimization and outlier removal[J]. Knowledge-Based Systems, 2024, 294:111742.
[13] HEIDARI J, DANESHPOUR N, ZANGENEH A. A novel k-means and k-medoids algorithms for clustering non-spherical-shape clusters non-sensitive to outliers[J]. Pattern Recognition, 2024, 155:110639.
[14] CAO Xinyu, YU Min, ZHANG Shuming, et al. Hierarchical clustering evolutionary tree-support for SLA[J]. Journal of Manufacturing Processes, 2024, 125:189-201.
[15] XU Zeshui, WU Junjie. Intuitionistic fuzzy c-means clustering algorithms[J]. Journal of Systems Engineering and Electronics, 2010, 21(4):580-590.
[16] SHANG Taotao, HUANG Qianwen, WANG Yongyi. Vibration reduction and energy harvesting on the ship thrust bearing unit excited by a measured shaft longitudinal vibration using NES-GMM[J]. Ocean Engineering, 2024, 294:116914.
[17] LIN Rongfu, GUO Weizhong, CHENG Shing Shin. Type synthesis of novel 1R, 2R, 1R1T, and 2R1T hybrid RCM mechanisms based on topological arrangement and modular design method[J]. Mechanism and Machine Theory, 2024, 200:105692.
[18] SZMIDT E, KACPRZYK J. Entropy for intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 2001, 118(3):467-477.
[19] GUO Kaihong, ZANG Jie. Knowledge measure for interval-valued intuitionistic fuzzy sets and its application to decision making under uncertainty[J]. Soft Computing, 2019, 23:6967-6978.
[20] GUO Kaihong, XU Hao. Knowledge measure for intuitionistic fuzzy sets with attitude towards non-specificity[J]. International Journal of Machine Learning and Cybernetics, 2019, 10:1657-1669.
[21] PATEL A, JANA S, MAHANTA J. Construction of similarity measure for intuitionistic fuzzy sets and its application in face recognition and software quality evaluation[J]. Expert Systems with Applications, 2024, 237:121491.
[22] GUO Kaihong, XU Hao. A unified framework for knowledge measure with application:from fuzzy sets through interval-valued intuitionistic fuzzy sets[J]. Applied Soft Computing, 2021, 109:107539.
[23] ZHANG Xiaoyan, WANG Jinghong, HOU Jianglong. Matrix-based approximation dynamic update approach to multi-granulation neighborhood rough sets for intuitionistic fuzzy ordered datasets[J]. Applied Soft Computing, 2024, 163:111915.
[24] 陈宝国,邓明. 基于对象更新的邻域多粒度粗糙集模型增量式算法[J]. 智能系统学报,2023,18(3):562-576. CHEN Baoguo, DENG Ming. Incremental algorithm for neighborhood multi-granular rough set model based on object update[J]. Journal of Intelligent Systems, 2023, 18(3):562-576.
[25] 莫子孟,尹立平. 基于模糊粗糙集的大型汽轮机组设备故障识别算法[J]. 能源科技,2024,22(3):44-48. MO Zimeng, YIN Liping. Fault diagnosis method for large turbine units based on fuzzy rough set[J]. Energy Technology, 2024, 22(3):44-48.
[26] 刘以,张小峰,孙玉娟,等. 基于加权滤波与核度量的鲁棒图像分割算法[J]. 激光与光电子学进展,2024,61(8):380-392. LIU Yi, ZHANG Xiaofeng, SUN Yujuan, et al. Robust image segmentation algorithm based on weighted filtering and kernel metrics[J]. Progress in Laser and Optoelectronics, 2024, 61(8):380-392.
[27] 刘子源,马占有,李霞,等.基于模糊测度的最大可能性互模拟等价研究[J/OL]. 郑州大学学报(理学版).(2025-01-13)[2025-11-16]. https://doi.org/10.13705/j.issn.1671-6841.2024144.7. LIU Ziyuan, MA Zhanyou, LI Xia, et al. Study on maximum likelihood mutual simulation equivalence based on fuzzy measures[J/OL]. Journal of Zhengzhou University(Natural Science Edition).(2025-01-13)[2025-11-16]. https://doi.org/10.13705/j.issn.1671-6841.2024144.7.
[28] 李繁,张晓宇,刘林东. 基于广义粒度自编码器的模糊粗糙聚类算法[J]. 计算机应用与软件,2024,41(3):266-275. LI Fan, ZHANG Xiaoyu, LIU Lindong. Fuzzy rough clustering method based on generalized granular self-encoder[J]. Computer Applications and Software, 2024, 41(3):266-275.
[29] 朱世超,王骋程,王超,等. 基于支持向量聚类和模糊粗糙集的交通流数据修复算法[J]. 森林工程,2023,39(1):157-165. ZHU Sichao, WANG Chengcheng, WANG Chao, et al. Traffic flow data repair method based on support vector clustering and fuzzy rough sets[J]. Forest Engineering, 2023, 39(1):157-165.
[30] 任浩伟,王青海,张巧珍. 区间值直觉模糊β覆盖粗糙集模型[J]. 陕西科技大学学报,2024,42(5):214-224. REN Haowei, WANG Qinghai, ZHANG Qiaozhen. Interval-valued intuitionistic fuzzy β-covering rough set model[J]. Journal of Shaanxi University of Science and Technology, 2024, 42(5):214-224.
[31] 商钰玲,李鹏,朱枫,等. 基于模糊逻辑的物联网流量攻击检测技术综述[J]. 计算机科学,2024,51(3):3-13. SHANG Yuling, LI Peng, ZHU Feng, et al.Overview of IoT traffic attack detection technology based on fuzzy logic[J]. Computer Science, 2024, 51(3):3-13.
[32] ATANASSOV K T. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20(1):87-96.
[33] GUO Kaihong, XU Hao. Preference and attitude in parameterized knowledge measure for decision making under uncertainty[J]. Applied Intelligence, 2021, 51(10):7484-7493.
[34] MÜLLER K R, MIKA S, RATSCH G, et al. An introduction to kernel-based learning algorithms[J]. IEEE Transactions on Neural Networks, 2001, 12(2):181-201.
[35] WAN Jihong, CHEN Hongmei, LI Tianrui, et al. Dynamic interaction feature selection based on fuzzy rough set[J]. Information Sciences, 2021, 581:891-911.
[36] MERCER J. Functions of positive and negative type, and their connection with the theory of integral equations[J]. Philosophical Transactions of the Royal Society of London, 1909, 209:415-446.
[37] YAGER R R. Some aspects of intuitionistic fuzzy sets[J]. Fuzzy Optimization and Decision Making, 2009, 8(1):67-90.
[38] YANG Xiaowei, ZHANG Guangquan, LU Jie, et al. A kernel fuzzyc-means clustering-based fuzzy support vector machine algorithm for classification problems with outliers or noises[J]. IEEE Transactions on Fuzzy Systems, 2010, 19(1):105-115.
[39] KASTRITSI T, DOULGERI Z. A controller to impose a RCM for hands-on robotic-assisted minimally invasive surgery[J]. IEEE Transactions on Medical Robotics and Bionics, 2021, 3(2):392-401.
[40] PU Yue, YAO Wenbin, LI Xiaoyong. EM-IFCM: fuzzy c-means clustering algorithm based on edge modification for imbalanced data[J]. Information Sciences, 2024, 659:120029.
[41] RAN Xingcheng, XI Yue, LU Yonggang, et al. Comprehensive survey on hierarchical clustering algorithms and the recent developments[J]. Artificial Intelligence Review, 2023, 56:8219-8264.
[42] YU Hong, WANG Xincheng, WANG Guoyin, et al. An active three-way clustering method via low-rank matrices for multi-view data[J]. Information Sciences, 2020, 507:823-839.
[43] LIU Rui, WANG Hong, YU Xiaomei. Shared-nearest-neighbor-based clustering by fast search and find of density peaks[J]. Information Sciences, 2018, 450:200-226.
[44] WANG Wei, XIA Feng, NIE Hansong, et al. Vehicle trajectory clustering based on dynamic representation learning of internet of vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(6):3567-3576.
[1] 李心如,李令强,贾成昭. 新型多粒度变精度(*,·)-模糊粗糙集[J]. 《山东大学学报(理学版)》, 2025, 60(7): 131-142.
[2] 金鑫,于非凡,戴雨桐,李兹谦,邹永魁. 基于聚类分析和鉴别信息的教学效果评价模型分析[J]. 《山东大学学报(理学版)》, 2023, 58(7): 115-120.
[3] 吴凡,孔祥智. 基于模糊信息系统的模糊β-覆盖粗糙集模型[J]. 《山东大学学报(理学版)》, 2023, 58(5): 10-16.
[4] 唐益明,张征,芦启明. 分段二次方转换函数驱动的高斯核模糊C均值聚类[J]. 《山东大学学报(理学版)》, 2020, 55(3): 107-112.
[5] 胡谦,米据生,李磊军. 多粒度模糊粗糙近似算子的信任结构与属性约简[J]. 山东大学学报(理学版), 2017, 52(7): 30-36.
[6] 罗海燕, 吕萍, 刘林忠, 杨洵. 云环境下基于模糊粗糙AHP的企业信任综合评估[J]. 山东大学学报(理学版), 2014, 49(08): 111-117.
[7] 鲁小云1,杨勇2. 单向S-模糊粗糙集及其应用[J]. J4, 2011, 46(8): 110-113.
[8] 林梦雷1,杨伟萍2. 蕴涵区间直觉模糊粗糙集及其性质[J]. J4, 2011, 46(8): 104-109.
[9] 王德良,李科,朱文博. 五龙河自然保护区鸟类群落夏秋食性特征分析[J]. J4, 2010, 45(5): 28-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!