您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (7): 131-142.doi: 10.6040/j.issn.1671-9352.0.2024.187

• • 上一篇    

新型多粒度变精度(*,·)-模糊粗糙集

李心如,李令强*,贾成昭   

  1. 聊城大学数学科学学院, 山东 聊城 252000
  • 发布日期:2025-07-01
  • 通讯作者: 李令强(1980— ),男,教授,硕士生导师,博士,研究方向为模糊粗糙集. E-mail:lilingqiang0614@126.com
  • 作者简介:李心如(2000— ),女,硕士研究生,研究方向为模糊粗糙集. E-mail:lixinru2332@126.com*通信作者:李令强(1980— ),男,教授,硕士生导师,博士,研究方向为模糊粗糙集. E-mail:lilingqiang0614@126.com
  • 基金资助:
    国家自然科学基金资助项目(12171220);山东省自然科学基金资助项目(ZR2023MA079)

Novel multi-granularity variable precision(*,·)-fuzzy rough set

LI Xinru, LI Lingqiang*, JIA Chengzhao   

  1. Department of Mathematics Science, Liaocheng University, Liaocheng 252000, Shandong, China
  • Published:2025-07-01

摘要: 引入一种新型变精度(*,·)-模糊粗糙集,结合多粒度思想,提出了包含乐观、悲观和折中3个基本模型的多粒度变精度(*,·)-模糊粗糙集,研究了模型的代数性质和拓扑性质,证明了模型满足包含性、幂等性、对偶性等性质,并且能诱导模糊拓扑、模糊余拓扑结构。

关键词: 模糊粗糙集, 变精度, 多粒度, 三角模

Abstract: A novel variable precision(*,·)-fuzzy rough set is introduced. Combined with the idea of multi-granularity, a multi-granularity variable precision(*,·)-fuzzy rough set is further proposed, which includes three basic models, optimism, pessimism and compromise. The algebraic and topological properties of the model are investigated, and it is proved that the model satisfies the properties of inclusion, idempotency and duality, and can induce fuzzy topology and fuzzy cotopology structure.

Key words: fuzzy rough set, variable precision, multi-granularity, triangular norm

中图分类号: 

  • TP181
[1] ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(3):338-353.
[2] PAWLAK Z. Rough set[J]. International Journal of Computer and Information Sciences, 1982, 11:341-356.
[3] WANG Changzhong, HU Qinghua, WANG Xizhao, et al. Feature selection based on neighborhood discrimination index[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 29(7):2986-2999.
[4] CAO Junqin, ZHANG Xueying, ZHANG Chunmei, et al. Improved convolutional neural network combined with rough set theory for data aggregation algorithm[J]. Journal of Ambient Intelligence and Humanized Computing, 2020, 11:647-654.
[5] 宋苏洋,叶军,曾广财,等. 基于优化可辨识矩阵的多粒度粗糙集属性约简算法[J]. 山东大学学报(理学版),2024,59(5):52-62. SONG Suyang, YE Jun, ZENG Guangcai, et al. Multi-granularity rough set attribute reduction algorithm based on optimized discernibility matrix[J]. Journal of Shandong University(Natural Science), 2024, 59(5):52-62.
[6] 王莉. 随机多属性子空间的ReliefF加权邻域粗糙集与属性约简[J]. 计算机工程与应用,2024,60(8):69-77. WANG Li. ReliefF weighted neighborhood rough sets and attribute reduction based on random multi-attribute subspaces[J]. Journal of Computer Engineering and Applications, 2024, 60(8):69-77.
[7] JIA Fan, LIU Peide. A novel three-way decision model under multiple-criteria environment[J]. Information Sciences, 2019, 471:29-51.
[8] BAI Juncheng, SUN Bingzhen, CHU Xiaoli, et al. Neighborhood rough set-based multiattribute prediction approach and its application of gout patients[J]. Applied Soft Computing, 2022, 114:108127.
[9] ZIARKO W. Variable precision rough set model[J]. Journal of Computer and System Sciences, 1993, 46(1):39-59.
[10] YAO Yanqing, MI Jusheng, LI Zhoujun. A novel variable precision(θ,σ)-fuzzy rough set model based on fuzzy granules[J]. Fuzzy Sets and Systems, 2014, 236:58-72.
[11] WANG Chunyong, HU Baoqing. Granular variable precision fuzzy rough sets with general fuzzy relations[J]. Fuzzy Sets and Systems, 2015, 275:39-57.
[12] LI Wei, YANG Bin, QIAO Junsheng. (O,G)-granular variable precision fuzzy rough sets based on overlap and group functions[J]. Computational and Applied Mathematics, 2023, 42(3):1-30.
[13] ZOU Dandan, XU Yaoliang, LI Lingqiang, et al. Novel variable precision fuzzy rough sets and three-way decision model with three strategies[J]. Information Sciences, 2023, 629:222-248.
[14] QIAN Yuhua, LIANG Jiye, YAO Yiyu, et al. MGRS: a multi-granulation rough set[J]. Information Sciences, 2010, 180(6):949-970.
[15] ZHAN Jianming, ZHANG Kai, LIU Peide, et al. A novel group decision-making approach in multi-scale environments[J]. Applied Intelligence, 2023, 53(12):15127-15146.
[16] JU Hengrong, DING Weiping, SHI Zhenquan, et al. Attribute reduction with personalized information granularity of nearest mutual neighbors[J]. Information Sciences, 2022, 613:114-138.
[17] JIANG Deng, ZHAN Jianming, XU Zeshui, et al. Regret-theoretic multi-attribute decision-making model using three-way framework in multi-scale information systems[J]. IEEE Transactions on Cybernetics, 2023, 53(6):3988-4001.
[18] SUN Bingzhen, ZHANG Xinrui, QI Chang, et al. Neighborhood relation-based variable precision multigranulation Pythagorean fuzzy rough set approach for multiattribute group decision making[J]. International Journal of Approximate Reasoning, 2022, 151:1-20.
[19] 郑文彬,李进金,张燕兰. 基于矩阵的可变粒度变精度邻域粗糙集近似集更新方法[J]. 模糊系统与数学,2022,36(1):97-109. ZHENG Wenbin, LI Jinjin, ZHANG Yanlan. Matrix-based approaches for updating approximations in variable granulation variable precision neighborhood multigranulation rough sets while neighborhood classes decreasing[J]. Fuzzy Systems and Mathematics, 2022, 36(1):97-109.
[20] YE Jin, SUN Bingzhen, ZHAN Jianming, et al. Variable precision multi-granulation composite rough sets with multidecision and their applications to medical diagnosis[J]. Information Sciences, 2022, 615:293-322.
[21] MI J S, YEE L, ZHAO H Y, et al. Generalized fuzzy rough sets determined by a triangular norm[J]. Information Sciences, 2008, 178(16):3203-3213.
[22] HÖHLE U, RODABAUGH S E. Mathematics of fuzzy sets: logic, topology, and measure theory[M]. Boston: Kluwer Academic Publishers, 1999.
[1] 华有霖,邵亚斌,朱学勤. 基于粒球计算的多粒度支持向量回归算法[J]. 《山东大学学报(理学版)》, 2025, 60(7): 104-115.
[2] 吴辛尧,徐计. 基于图互信息池化的分层图表示学习[J]. 《山东大学学报(理学版)》, 2025, 60(7): 84-93.
[3] 宋苏洋,叶军,曾广财,孙清. 基于优化可辨识矩阵的多粒度粗糙集属性约简算法[J]. 《山东大学学报(理学版)》, 2024, 59(5): 52-62.
[4] 王茜,张贤勇. 不完备邻域加权多粒度决策理论粗糙集及三支决策[J]. 《山东大学学报(理学版)》, 2023, 58(9): 94-104.
[5] 吴凡,孔祥智. 基于模糊信息系统的模糊β-覆盖粗糙集模型[J]. 《山东大学学报(理学版)》, 2023, 58(5): 10-16.
[6] 于鹏,李冉冉. 一类由一致模与模糊否定构造的新模糊蕴涵——(N,U)-蕴涵[J]. 《山东大学学报(理学版)》, 2023, 58(5): 1-9.
[7] 马慧,魏立力. 基于犹豫三角模糊相关系数的聚类分析[J]. 《山东大学学报(理学版)》, 2023, 58(12): 118-126.
[8] 钱进,汤大伟,洪承鑫. 多粒度层次序贯三支决策模型研究[J]. 《山东大学学报(理学版)》, 2022, 57(9): 33-45.
[9] 苏晓艳,陈京荣,尹会玲. 广义区间值Pythagorean三角模糊集成算子及其决策应用[J]. 《山东大学学报(理学版)》, 2022, 57(8): 77-87.
[10] 赵双燕,吴家超. 模糊论辩框架哥德尔语义的数值特征[J]. 《山东大学学报(理学版)》, 2022, 57(8): 53-59.
[11] 范敏,罗杉,李金海. 基于变精度可能算子的网络概念认知[J]. 《山东大学学报(理学版)》, 2022, 57(8): 1-12.
[12] 孙文鑫,刘玉锋. 基于参数粒的广义多粒度粗糙集[J]. 《山东大学学报(理学版)》, 2022, 57(5): 11-19.
[13] 李星宇,段景瑶. 基于三角模的直觉相似度及其应用[J]. 《山东大学学报(理学版)》, 2022, 57(4): 37-47.
[14] 张文娟,李进金,林艺东. 基于图的悲观多粒度粗糙集粒度约简[J]. 《山东大学学报(理学版)》, 2021, 56(1): 60-67.
[15] 李金海,贺建君,吴伟志. 多粒度形式概念分析的类属性块优化[J]. 《山东大学学报(理学版)》, 2020, 55(5): 1-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!