《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (7): 131-142.doi: 10.6040/j.issn.1671-9352.0.2024.187
• • 上一篇
李心如,李令强*,贾成昭
LI Xinru, LI Lingqiang*, JIA Chengzhao
摘要: 引入一种新型变精度(*,·)-模糊粗糙集,结合多粒度思想,提出了包含乐观、悲观和折中3个基本模型的多粒度变精度(*,·)-模糊粗糙集,研究了模型的代数性质和拓扑性质,证明了模型满足包含性、幂等性、对偶性等性质,并且能诱导模糊拓扑、模糊余拓扑结构。
中图分类号:
[1] ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(3):338-353. [2] PAWLAK Z. Rough set[J]. International Journal of Computer and Information Sciences, 1982, 11:341-356. [3] WANG Changzhong, HU Qinghua, WANG Xizhao, et al. Feature selection based on neighborhood discrimination index[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 29(7):2986-2999. [4] CAO Junqin, ZHANG Xueying, ZHANG Chunmei, et al. Improved convolutional neural network combined with rough set theory for data aggregation algorithm[J]. Journal of Ambient Intelligence and Humanized Computing, 2020, 11:647-654. [5] 宋苏洋,叶军,曾广财,等. 基于优化可辨识矩阵的多粒度粗糙集属性约简算法[J]. 山东大学学报(理学版),2024,59(5):52-62. SONG Suyang, YE Jun, ZENG Guangcai, et al. Multi-granularity rough set attribute reduction algorithm based on optimized discernibility matrix[J]. Journal of Shandong University(Natural Science), 2024, 59(5):52-62. [6] 王莉. 随机多属性子空间的ReliefF加权邻域粗糙集与属性约简[J]. 计算机工程与应用,2024,60(8):69-77. WANG Li. ReliefF weighted neighborhood rough sets and attribute reduction based on random multi-attribute subspaces[J]. Journal of Computer Engineering and Applications, 2024, 60(8):69-77. [7] JIA Fan, LIU Peide. A novel three-way decision model under multiple-criteria environment[J]. Information Sciences, 2019, 471:29-51. [8] BAI Juncheng, SUN Bingzhen, CHU Xiaoli, et al. Neighborhood rough set-based multiattribute prediction approach and its application of gout patients[J]. Applied Soft Computing, 2022, 114:108127. [9] ZIARKO W. Variable precision rough set model[J]. Journal of Computer and System Sciences, 1993, 46(1):39-59. [10] YAO Yanqing, MI Jusheng, LI Zhoujun. A novel variable precision(θ,σ)-fuzzy rough set model based on fuzzy granules[J]. Fuzzy Sets and Systems, 2014, 236:58-72. [11] WANG Chunyong, HU Baoqing. Granular variable precision fuzzy rough sets with general fuzzy relations[J]. Fuzzy Sets and Systems, 2015, 275:39-57. [12] LI Wei, YANG Bin, QIAO Junsheng. (O,G)-granular variable precision fuzzy rough sets based on overlap and group functions[J]. Computational and Applied Mathematics, 2023, 42(3):1-30. [13] ZOU Dandan, XU Yaoliang, LI Lingqiang, et al. Novel variable precision fuzzy rough sets and three-way decision model with three strategies[J]. Information Sciences, 2023, 629:222-248. [14] QIAN Yuhua, LIANG Jiye, YAO Yiyu, et al. MGRS: a multi-granulation rough set[J]. Information Sciences, 2010, 180(6):949-970. [15] ZHAN Jianming, ZHANG Kai, LIU Peide, et al. A novel group decision-making approach in multi-scale environments[J]. Applied Intelligence, 2023, 53(12):15127-15146. [16] JU Hengrong, DING Weiping, SHI Zhenquan, et al. Attribute reduction with personalized information granularity of nearest mutual neighbors[J]. Information Sciences, 2022, 613:114-138. [17] JIANG Deng, ZHAN Jianming, XU Zeshui, et al. Regret-theoretic multi-attribute decision-making model using three-way framework in multi-scale information systems[J]. IEEE Transactions on Cybernetics, 2023, 53(6):3988-4001. [18] SUN Bingzhen, ZHANG Xinrui, QI Chang, et al. Neighborhood relation-based variable precision multigranulation Pythagorean fuzzy rough set approach for multiattribute group decision making[J]. International Journal of Approximate Reasoning, 2022, 151:1-20. [19] 郑文彬,李进金,张燕兰. 基于矩阵的可变粒度变精度邻域粗糙集近似集更新方法[J]. 模糊系统与数学,2022,36(1):97-109. ZHENG Wenbin, LI Jinjin, ZHANG Yanlan. Matrix-based approaches for updating approximations in variable granulation variable precision neighborhood multigranulation rough sets while neighborhood classes decreasing[J]. Fuzzy Systems and Mathematics, 2022, 36(1):97-109. [20] YE Jin, SUN Bingzhen, ZHAN Jianming, et al. Variable precision multi-granulation composite rough sets with multidecision and their applications to medical diagnosis[J]. Information Sciences, 2022, 615:293-322. [21] MI J S, YEE L, ZHAO H Y, et al. Generalized fuzzy rough sets determined by a triangular norm[J]. Information Sciences, 2008, 178(16):3203-3213. [22] HÖHLE U, RODABAUGH S E. Mathematics of fuzzy sets: logic, topology, and measure theory[M]. Boston: Kluwer Academic Publishers, 1999. |
[1] | 华有霖,邵亚斌,朱学勤. 基于粒球计算的多粒度支持向量回归算法[J]. 《山东大学学报(理学版)》, 2025, 60(7): 104-115. |
[2] | 吴辛尧,徐计. 基于图互信息池化的分层图表示学习[J]. 《山东大学学报(理学版)》, 2025, 60(7): 84-93. |
[3] | 宋苏洋,叶军,曾广财,孙清. 基于优化可辨识矩阵的多粒度粗糙集属性约简算法[J]. 《山东大学学报(理学版)》, 2024, 59(5): 52-62. |
[4] | 王茜,张贤勇. 不完备邻域加权多粒度决策理论粗糙集及三支决策[J]. 《山东大学学报(理学版)》, 2023, 58(9): 94-104. |
[5] | 吴凡,孔祥智. 基于模糊信息系统的模糊β-覆盖粗糙集模型[J]. 《山东大学学报(理学版)》, 2023, 58(5): 10-16. |
[6] | 于鹏,李冉冉. 一类由一致模与模糊否定构造的新模糊蕴涵——(N,U)-蕴涵[J]. 《山东大学学报(理学版)》, 2023, 58(5): 1-9. |
[7] | 马慧,魏立力. 基于犹豫三角模糊相关系数的聚类分析[J]. 《山东大学学报(理学版)》, 2023, 58(12): 118-126. |
[8] | 钱进,汤大伟,洪承鑫. 多粒度层次序贯三支决策模型研究[J]. 《山东大学学报(理学版)》, 2022, 57(9): 33-45. |
[9] | 苏晓艳,陈京荣,尹会玲. 广义区间值Pythagorean三角模糊集成算子及其决策应用[J]. 《山东大学学报(理学版)》, 2022, 57(8): 77-87. |
[10] | 赵双燕,吴家超. 模糊论辩框架哥德尔语义的数值特征[J]. 《山东大学学报(理学版)》, 2022, 57(8): 53-59. |
[11] | 范敏,罗杉,李金海. 基于变精度可能算子的网络概念认知[J]. 《山东大学学报(理学版)》, 2022, 57(8): 1-12. |
[12] | 孙文鑫,刘玉锋. 基于参数粒的广义多粒度粗糙集[J]. 《山东大学学报(理学版)》, 2022, 57(5): 11-19. |
[13] | 李星宇,段景瑶. 基于三角模的直觉相似度及其应用[J]. 《山东大学学报(理学版)》, 2022, 57(4): 37-47. |
[14] | 张文娟,李进金,林艺东. 基于图的悲观多粒度粗糙集粒度约简[J]. 《山东大学学报(理学版)》, 2021, 56(1): 60-67. |
[15] | 李金海,贺建君,吴伟志. 多粒度形式概念分析的类属性块优化[J]. 《山东大学学报(理学版)》, 2020, 55(5): 1-12. |
|