您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (8): 53-59.doi: 10.6040/j.issn.1671-9352.0.2021.803

• • 上一篇    下一篇

模糊论辩框架哥德尔语义的数值特征

赵双燕,吴家超*   

  1. 山东师范大学数学与统计学院, 山东 济南 250358
  • 出版日期:2022-08-20 发布日期:2022-06-29
  • 作者简介:赵双燕(1995— ),女,硕士研究生,研究方向为半群代数理论. E-mail: 1914401381@qq.com*通信作者简介:吴家超(1981— ),男,博士,副教授,硕士生导师,研究方向为模糊论辩框架. E-mail: wujiachao1981@163.com

Numerical properties of Gödel semantics in fuzzy argumentation frameworks

ZHAO Shuang-yan, WU Jia-chao*   

  1. School of Mathematics and Statistics, Shandong Normal University, Jinan 250358, Shandong, China
  • Online:2022-08-20 Published:2022-06-29

摘要: 模糊论辩框架的哥德尔语义体系涵盖几种基本的外延语义,却未对各外延语义的性质展开进一步研究。这为该语义系统的计算和快速识别带来一定的困难。文章通过对各外延语义的数值特征的深入研究,为上述问题提供一定的解决方案。借助于哥德尔三角模的基本性质,逐一推导哥德尔语义体系中无冲突集、可容许外延、完全外延、优选外延(稳定外延)和基外延的数值特征,并在无圈、奇数圈和偶数圈的模糊辩论框架中分别给出基外延的算法。这些结论是对该语义体系的理论推广;同时,绕过定义直接依据数值判定外延语义的方法,以及从空集计算基外延的算法,是对该语义体系在算法和快速识别方面的发展。

关键词: 论辩框架, 模糊集, 模糊论辩框架, 哥德尔语义, 哥德尔三角模

Abstract: The Gödel semantics in fuzzy argumentation frameworks covers several basic extension semantics, but does not further study the properties of each extension semantics. This brings some difficulties to the calculation and quick recognition of the semantic system. Through the in-depth study of the numerical properties of each extension semantics, this paper provides some solutions to the above problems. With the help of the basic properties of the Gödel t-norm, the numerical properties of the conflict-free set, the admissible extension, the complete extension, the preferred extension(the stable extension), and the grounded extension in the Gödel semantics are deduced one by one, and the algorithms of the grounded extension are given in fuzzy AFs without cycles and fuzzy AFs consisting of odd cycles or even cycles. These conclusions are the theoretical generalization of the semantic system. At the same time, the method of bypassing the definition and directly judging the extension semantics based on numerical values, as well as the algorithm of calculating the grounded extension from empty sets, are the development of the semantics in terms of algorithm and quick identification.

Key words: argumentation framework, fuzzy set, fuzzy argumentation framework, Gö, del semantics, Gö, del t-norm

中图分类号: 

  • TP18
[1] DUNG P M. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[J]. Artificial Intelligence, 1995, 77(2): 321-357.
[2] BARONI P, TONI F, VERHEIJ B. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games: 25 years later[J]. Argument & Computation, 2020, 11(1/2): 1-14.
[3] 廖备水. 论辩系统的动态性及其研究进展[J]. 软件学报, 2012, 23(11): 2871-2884. LIAO Beishui. Dynamics of argumentation systems and its research development[J]. Journal of Software, 2012, 23(11): 2871-2884.
[4] 姚莉. 计算辩论与智能决策[M]. 北京:科学出版社, 2014. YAO Li. Computational debate and intelligent decision[M]. Beijing: Science Press, 2014.
[5] ATKINSON K, BENCH-CAPON T. Argumentation schemes in AI and law[J]. Argument & Computation, 2021, 12(3): 417-434.
[6] BENEDETTI I, BISTARELLI S. From argumentation frameworks to voting systems and back[J]. Fundamenta Informaticae, 2017, 150(1): 25-48.
[7] AMGOUD L, DODER D, VESIC S. Evaluation of argument strength in attack graphs: foundations and semantics[J]. Artificial Intelligence, 2022, 302(1): 103607.
[8] DA COSTA PEREIRA C, TETTAMANZI A G, VILLATA S. Changing one's mind: erase or rewind? possibilistic belief revision with fuzzy argumentation based on trust[C] //WALSH T. In Proceedings of the 22nd International Joint Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2011: 164-171.
[9] JANSSEN J, COCK M D, VERMEIR D. Fuzzy argumentation frameworks[C] //MAGDALENA L. In Proceedings of the 12th Conference on Information Processing and Management of Uncertainty in Knowledge-based Systems(IPMU 2008). Spain, Málaga: [s.n.] , 2008: 513-520.
[10] WU J, LI H, OREN N, et al. Gödel fuzzy argumentation frameworks[C] //BARONI P. In Proceedings of the International Conference on Computational Models of Argument(COMMA 2016). Amsterdam: IOS Press, 2016: 447-458.
[11] WU Jiachao, LI Hengfei, SUN Weihua. Gödel semantics of fuzzy argumentation frameworks with consistency degrees[J]. AIMS Mathematics, 2020, 5(4): 4045-4064.
[12] BARONI P, ROMANO M, TONI F, et al. Automatic evaluation of design alternatives with quantitative argumentation[J]. Argument & Computation, 2015, 6(1): 24-49.
[1] 巩增泰,他广朋. 直觉模糊集所诱导的软集语义及其三支决策[J]. 《山东大学学报(理学版)》, 2022, 57(8): 68-76.
[2] 史开泉,李守伟. 分离模糊集合(A(-overF),AF)与模糊信息智能融合[J]. 《山东大学学报(理学版)》, 2022, 57(7): 1-13.
[3] 薛占熬,李永祥,姚守倩,荆萌萌. 基于Bayesian直觉模糊粗糙集的数据分类方法[J]. 《山东大学学报(理学版)》, 2022, 57(5): 1-10.
[4] 李星宇,段景瑶. 基于三角模的直觉相似度及其应用[J]. 《山东大学学报(理学版)》, 2022, 57(4): 37-47.
[5] 黄林,袁修久,索中英,庞梦洋,包壮壮,李智伟. 区间值q阶犹豫模糊Frank集成算子及其决策应用[J]. 《山东大学学报(理学版)》, 2021, 56(3): 54-66.
[6] 杜文胜,徐涛. 广义正交模糊混合平均算子及其在多属性决策中的应用[J]. 《山东大学学报(理学版)》, 2021, 56(1): 35-42.
[7] 郑焕科,张晶,杨亚琦,熊梅惠. 多属性决策的时间不确定事件流时序推理方法[J]. 《山东大学学报(理学版)》, 2020, 55(7): 67-80.
[8] 邵亚斌,王宁. 基于梯形模糊数Pythagorean模糊集的熵及决策规则[J]. 《山东大学学报(理学版)》, 2020, 55(4): 108-117.
[9] 郝秀梅,刘纪芹. 外P-模糊集的截集与扩展粗集模型[J]. 《山东大学学报(理学版)》, 2020, 55(10): 1-6.
[10] 孙倩倩,李小南. 区间毕达哥拉斯模糊集的信息度量及其应用[J]. 《山东大学学报(理学版)》, 2019, 54(9): 43-53.
[11] 张克勇,吕美琳,姚建明,王昊. 物流外包满意度提升路径——基于模糊集定性比较[J]. 《山东大学学报(理学版)》, 2019, 54(3): 119-126.
[12] 罗清君. Quantale的L-模糊理想[J]. 《山东大学学报(理学版)》, 2019, 54(12): 63-67.
[13] 彭家寅. 关联模糊集理论的伪BL-代数的软滤子[J]. 山东大学学报(理学版), 2015, 50(08): 40-45.
[14] 石素玮, 李进金, 谭安辉. 一类覆盖粗糙直觉模糊集模型的模糊粗糙度和粗糙熵[J]. 山东大学学报(理学版), 2014, 49(08): 86-91.
[15] 翟俊海, 张垚, 王熙照. 相容粗糙模糊集模型[J]. 山东大学学报(理学版), 2014, 49(08): 73-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨军. 金属基纳米材料表征和纳米结构调控[J]. 山东大学学报(理学版), 2013, 48(1): 1 -22 .
[2] 何海伦, 陈秀兰*. 变性剂和缓冲系统对适冷蛋白酶MCP-01和中温蛋白酶BP-01构象影响的圆二色光谱分析何海伦, 陈秀兰*[J]. 山东大学学报(理学版), 2013, 48(1): 23 -29 .
[3] 赵君1,赵晶2,樊廷俊1*,袁文鹏1,3,张铮1,丛日山1. 水溶性海星皂苷的分离纯化及其抗肿瘤活性研究[J]. J4, 2013, 48(1): 30 -35 .
[4] 孙小婷1,靳岚2*. DOSY在寡糖混合物分析中的应用[J]. J4, 2013, 48(1): 43 -45 .
[5] 罗斯特,卢丽倩,崔若飞,周伟伟,李增勇*. Monte-Carlo仿真酒精特征波长光子在皮肤中的传输规律及光纤探头设计[J]. J4, 2013, 48(1): 46 -50 .
[6] 杨伦,徐正刚,王慧*,陈其美,陈伟,胡艳霞,石元,祝洪磊,曾勇庆*. RNA干扰沉默PID1基因在C2C12细胞中表达的研究[J]. J4, 2013, 48(1): 36 -42 .
[7] 冒爱琴1, 2, 杨明君2, 3, 俞海云2, 张品1, 潘仁明1*. 五氟乙烷灭火剂高温热解机理研究[J]. J4, 2013, 48(1): 51 -55 .
[8] 杨莹,江龙*,索新丽. 容度空间上保费泛函的Choquet积分表示及相关性质[J]. J4, 2013, 48(1): 78 -82 .
[9] 李永明1, 丁立旺2. PA误差下半参数回归模型估计的r-阶矩相合[J]. J4, 2013, 48(1): 83 -88 .
[10] 董伟伟. 一种具有独立子系统的决策单元DEA排序新方法[J]. J4, 2013, 48(1): 89 -92 .