您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (10): 1-6.doi: 10.6040/j.issn.1671-9352.0.2020.196

• •    下一篇

外P-模糊集的截集与扩展粗集模型

郝秀梅,刘纪芹   

  1. 山东财经大学数学与数量经济学院, 山东 济南 250014
  • 出版日期:2020-10-20 发布日期:2020-10-07
  • 作者简介:郝秀梅(1965— ),女,博士,教授,研究方向为系统决策理论与方法. E-mail:hxm0912@126.com

Cut sets of outer P-fuzzy sets and extended rough sets models

HAO Xiu-mei, LIU Ji-qin   

  1. School of Mathematic and Quantitative Economics, Shandong University of Finance and Economics, Jinan 250014, Shandong, China
  • Online:2020-10-20 Published:2020-10-07

摘要: P-模糊集是由内、外P-模糊集构成的集合对,内、外P-模糊集是两类不同的动态模糊集。截集方法是研究模糊集理论最常用的方法,提出外P-模糊集的λ-截集、λ-强截集、区间截集及其截集粒度的概念,讨论了外P-模糊集的截集序列粒度定理、区间截集序列粒度定理,给出外P-模糊集区间截集分解定理。利用外P-模糊集粗隶属度函数的概念,给出外P-模糊集AFFF)粗集、(1F,0F)粗集、(αFF)概率粗集、(αFF)的变精度粗集四种粗集扩展模型,讨论了外P-模糊集的FF)粗集定理,并给出其数量特征及关系讨论。

关键词: 外P-模糊集, 截集, 粗隶属度函数, 扩展模型, 变精度粗集

Abstract: The P-fuzzy sets are a pair of inner and outer P-fuzzy sets. Inner and outer P-fuzzy sets are two different kinds of dynamic fuzzy sets. The cut sets method is frequently used in fuzzy sets discussed. The concepts of λ-cut sets, strong λ-cut sets, interval cut sets and cut sets granularity are proposed, and the cut sets and interval cut sets granularity theorems of outer P-fuzzy sets are discussed. Then, the interval cut sets decomposition theorems of outer P-fuzzy sets are given. By using the concept of the outer P-fuzzy rough membership function, four rough sets extended models are proposed such as FF) rough sets, (1F,0F) rough sets, FF)probability rough sets and FF) variable precision rough sets. The FF)rough sets theorems of the outer P-fuzzy sets are discussed. In the end, the quantitative characteristics and relationship theorem are given.

Key words: outer P-fuzzy sets, cut sets, fuzzy rough membership function, extended model, variable precision rough sets

中图分类号: 

  • O159
[1] ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(3):338-353.
[2] DUBOIS D, PRADE B. The three senmantics of fuzzy sets[J]. Fuzzy Sets and Systems, 1997(90):141-150.
[3] GRESCONI G, TURKSEN B. Canonical forms of fuzzy teuthoods by meta-theory based model logic[J]. Information Sciences, 2001(131):157-194.
[4] 陈水利, 李敬功, 王向松. 模糊集理论及其应用[M]. 北京: 科学出版社, 2005: 10-19. CHEN Shuili, LI Jinggong, WANG Xiangsong. Fuzzy sets theory and applications[M]. Beijing: Science Press, 2005: 10-19.
[5] 袁修久, 张文修. 模糊粗糙集的包含度和相似度[J]. 模糊系统与数学, 2005, 19(1):111-115. YUAN Xiujiu, ZHANG Wenxiu. The inclusion degree and similarity degree of fuzzy rough sets[J]. Fuzzy Systems and Mathematics, 2005, 19(1):111-115.
[6] 史开泉, 李岐强. 双枝模糊决策与决策识别问题[J]. 中国工程科学, 2001,3(1):71-77. SHI Kaiquan, LI Qiqiang. Both-branch fuzzy decision and problems on decision discernment[J]. Engineering Science, 2001, 3(1):71-77.
[7] 史开泉, 崔玉泉. 双枝模糊决策与决策加密-认证[J].中国科学(E), 2003,33(2):154-163. SHI Kaiquan, CUI Yuquan. Both-branch fuzzy decision and problems on decision encryption authentication[J]. Science in China(Series E), 2003, 33(2):154-163.
[8] 闫立梅, 徐风生, 史开泉. P-模糊集(A(-overF),AF)及其应用[J]. 计算机科学,2011,38(5):194-198. YAN Limei, XU Fengsheng, SHI Kaiquan. P-fuzzy sets(A(-overF),AF)and its applications[J]. Computer Science, 2011, 38(5):194-198.
[9] 史开泉. P-集合[J].山东大学学报(理学版), 2008, 43(11):77-84. SHI Kaiquan. P-sets[J]. Journal of Shandong University(Natural Science), 2008, 43(11):77-84.
[10] 史开泉. P-集合与它的应用特征[J].计算机科学,2010,37(8):1-8. SHI Kaiquan. P-sets and its applied characteristics[J]. Computer Science, 2010, 37(8):1-8.
[11] 闫立梅. 内P-模糊集并-分离及其属性特征[J].山东大学学报(理学版), 2012, 47(1):104-109. YAN Limei. Union-separation of an internal P-fuzzy set and its attribute characteristics[J]. Journal of Shandong University(Natural Science), 2012, 47(1):104-109.
[12] 郝秀梅, 蒋秀青. 概率粗信息矩阵的结构特征[J].模糊系统与数学, 2017, 31(3):153-158. HAO Xiumei, JIANG Xiuqing. Structure characteristics on probability rough information matrix[J]. Fuzzy Systems and Mathematics, 2017, 31(3):153-158.
[13] 郝秀梅, 李宁宁. P-信息隐藏挖掘的数量特征及应用[J]. 山东大学学报(理学版), 2019, 54(9):9-15. HAO Xiumei, LI Ningning. The quantitative characteristics and applications of P-information hidden mining[J]. Journal of Shandong University(Natural Science), 2019, 54(9):9-14.
[14] 刘卫锋, 白雪. 粗糙模糊集的区间值水平分解定理[J]. 模糊系统与数学, 2016, 30(4):156-161. LIU Weifeng, BAI Xue. Interval-valued decomposition theorems of rough fuzzy sets[J]. Fuzzy Systems and Mathematics, 2016, 30(4):156-161.
[15] 史开泉,崔玉泉. S-粗集与粗决策[M]. 北京: 科学出版社, 2005: 170-185. SHI Kaiquan, CUI Yuquan. S-rough sets and rough decision[M]. Beijing: Science Press, 2005: 170-185.
[16] 张文修, 吴伟志, 梁吉业, 等. 粗糙集理论与方法[M]. 北京: 科学出版社, 2001: 132-155. ZHANG Wenxiu, WU Weizhi, LIANG Jiye, et al. Rough sets theory and method[M]. Beijing: Science Press, 2001: 132-155.
[17] 史开泉. 大数据结构-逻辑特征与大数据规律, 山东大学学报(理学版), 2019, 54(2):1-29. SHI Kaiquan. Big data structure-logic characteristics and big data law[J]. Journal of Shandong University(Natural Science), 2019, 54(2):1-29.
[18] HAO Xiumei, GUO Huifang, JIANG Xiuqing. Multi-attributes risk investment decision making based on dynamic probability rough sets[C] //Proceedings of the 2017 International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery. Guilin: IEEE, 2017: 2419-2423.
[1] 李秀红,薛佩军,史开泉 . 基于模糊集μRX的α-截集和强β-截集的粗近似[J]. J4, 2006, 41(1): 52-56 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨军. 金属基纳米材料表征和纳米结构调控[J]. 山东大学学报(理学版), 2013, 48(1): 1 -22 .
[2] 董伟伟. 一种具有独立子系统的决策单元DEA排序新方法[J]. J4, 2013, 48(1): 89 -92 .
[3] 张明明,秦永彬. 基于前序关系的非确定型有穷自动机极小化算法[J]. J4, 2010, 45(7): 34 -38 .
[4] 杨伦,徐正刚,王慧*,陈其美,陈伟,胡艳霞,石元,祝洪磊,曾勇庆*. RNA干扰沉默PID1基因在C2C12细胞中表达的研究[J]. J4, 2013, 48(1): 36 -42 .
[5] 张申贵. 局部超线性p-基尔霍夫方程的多重解[J]. 山东大学学报(理学版), 2014, 49(05): 61 -68 .
[6] 曲晓英,赵 静 . 含时线性Klein-Gordon方程的解[J]. J4, 2007, 42(7): 22 -26 .
[7] 廖明哲. 哥德巴赫的两个猜想[J]. J4, 2013, 48(2): 1 -14 .
[8] 王开荣,高佩婷. 建立在DY法上的两类混合共轭梯度法[J]. 山东大学学报(理学版), 2016, 51(6): 16 -23 .
[9] 李亚男1,刘磊坡2,王玉光3. 非线性时滞输入系统的滑模控制[J]. J4, 2010, 45(6): 99 -104 .
[10] 马海成 . 一类图的色等价图类[J]. J4, 2006, 41(5): 33 -38 .