您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (10): 7-14.doi: 10.6040/j.issn.1671-9352.0.2020.178

• • 上一篇    下一篇

数据智能分类与分类智能检索-识别

张凌,任雪芳*   

  1. 龙岩学院数学与信息工程学院, 福建 龙岩 364012
  • 出版日期:2020-10-20 发布日期:2020-10-07
  • 作者简介:张凌(1963— ),男,硕士,教授,研究方向为大数据分析与应用. E-mail:zl79024@163.com*通信作者简介:任雪芳(1981— ),女,硕士,副教授,研究方向为数据检索与识别. E-mail:renxf0311@163.com
  • 基金资助:
    大数据挖掘与应用福建省高校重点实验室(龙岩学院)资助项目;福建省龙岩市科技计划资助项目(2011LY20);龙岩市科技局资助项目(2019LYF12010)

Intelligent data classification and intelligent retrieval-recognition of class

ZHANG Ling, REN Xue-fang*   

  1. School of Mathematics and Information Engineering, Longyan University, Longyan 364012, Fujian, China
  • Online:2020-10-20 Published:2020-10-07

摘要: 基于具有动态特征的P-集合模型,针对∧型大数据,定义新概念αF-数据等价类、α(-overF)-数据等价类和F(-overF))-数据等价类,分析数据边界特征与度量,提出数据推理及推理结构。论文的主要结果是针对数据元的冗余与缺失定义数据边界收缩与扩张的度量,分析数据推理得到数据分类生成定理,设计数据智能检索算法与数据智能检索-识别准则,给出应用。

关键词: 大数据, 数据边界特征, 数据推理, 数据智能检索, 检索算法

Abstract: Based on the P-set models with dynamic characteristics, and for the research of ∧ type big data, several new concepts such as αF-data equivalence class, α(-overF)-data equivalence class and F(-overF))-data equivalence class are defined, the data boundary characteristics and measurement are analyzed, and data reasoning and its structure are proposed. The main points of this paper are to define the measurement of data boundary contraction and expansion for data element redundancy and missing, analysis data reasoning to obtain the generation theorems of data equivalence class, design data intelligent retrieval algorithm and data intelligent retrieval and recognition criteria, and finally give the application.

Key words: big data, data boundary characteristics, data reasoning, data intelligent retrieval, retrieval algorithm

中图分类号: 

  • O144
[1] 史开泉. 大数据结构-逻辑特征与大数据规律[J] ,山东大学学报(理学版), 2019, 54(2):1-29. SHI Kaiquan. Big data structure-logic characteristics and big data law[J]. Journal of Shandong University(Naturel Science), 2015, 54(2):1-29.
[2] 史开泉. P-集合[J]. 山东大学学报(理学版), 2008, 43(11):77-84. SHI Kaiquan. P-sets[J]. Journal of Shandong University(Natural Science), 2008, 43(11):77-84.
[3] SHI Kaiquan. P-sets and its applications[J]. Advances in Systems Science and Applications, 2009, 9(2):209-219.
[4] 史开泉. P-推理与信息的P-推理发现-辨识[J]. 计算机科学, 2011, 38(7):1-9. SHI Kaiquan. P-reasoning and P-reasoning discovery-identification of information[J]. Computer Science, 2011, 38(7):1-9.
[5] 史开泉. P-集合, 逆P-集合与信息智能融合-过滤辨识[J]. 计算机科学,2012, 39(4):1-13. SHI Kaiquan. P-sets, inverse P-sets and the intelligent fusion-filter identification of information[J]. Computer Science, 2012, 39(4):1-13.
[6] FAN Chengxian, LIN Hongkang. P-sets and the reasoning-identification of disaster information[J]. International Journal of Convergence Information Technology, 2012, 7(1):337-345.
[7] 史开泉. 函数P-集合[J]. 山东大学学报(理学版), 2011, 46(2):62-69. SHI Kaiquan. Function P-sets[J]. Journal of Shandong University(Natural Science), 2011, 46(2):62-69.
[8] SHI Kaiquan. Function P-sets[J]. International Journal of Machine Learning and Cybernetics, 2011, 2(4):281-288.
[9] TANG Jihua, ZHANG Ling, SHI Kaiquan. Outer P-information law reasoning and its application in intelligent fusion and separating of information law[J]. Microsystem Technologies, 2018, 24(10):4389-4398.
[10] 张凌, 任雪芳, 史开泉. 信息规律智能变换-伪装与P-规律增广矩阵[J]. 山东大学学报(理学版), 2016, 51(8):90-97. ZHANG Ling, REN Xuefang, SHI Kaiquan. Intelligent switch-camouflage of information laws and P-law augmented matrices[J]. Journal of Shandong University(Natural Science), 2016, 51(8):90-97.
[11] 史开泉. 逆P-集合[J]. 山东大学学报(理学版), 2012, 47(1):98-109. SHI Kaiquan. Inverse P-sets[J]. Journal of Shandong University(Natural Science), 2012, 47(1):98-109.
[12] 史开泉. 函数逆P-集合与信息规律融合[J]. 山东大学学报(理学版), 2012, 47(8):73-80. SHI Kaiquan. Function inverse P-sets and information law fusion[J]. Journal of Shandong University(Natural Science), 2012, 47(8):73-80.
[13] 任雪芳, 张凌, 史开泉. 基数余-亏与逆P-增广矩阵[J]. 山东大学学报(理学版), 2015, 50(10):13-18, 26. REN Xuefang, ZHANG Ling, SHI Kaiquan. Surplus-deficiency of cardinal number and inverse P-augmented matrices[J]. Journal of Shandong University(Natural Science), 2015, 50(10):13-18, 26.
[14] 张凌, 任雪芳. 基数余-亏定理与数据外-内挖掘-分离[J]. 山东大学学报(理学版), 2015, 50(8):90-94. ZHANG Ling, REN Xuefang. Surplus-deficient theorem of cardinal number and data internal-outer mining-separation[J]. Journal of Shandong University(Natural Science), 2015, 50(8):90-94.
[15] ZHANG Ling, REN Xuefang, SHI Kaiquan. The dynamic segmentation characteristics of P-augmented matrix and the dynamic intelligent acquisition of P-information[J]. International Journal of Applied Decision Sciences, 2016, 9(4):413-425.
[16] REN Xuefang, ZHANG Ling, SHI Kaiquan, et al. Inverse P-augmented matrix method-based the dynamic findings of unknown information[J]. Microsystem Technologies, 2018, 24(10):4187-4192.
[17] ZHANG Ling, REN Xuefang, SHI Kaiquan. Inverse P-information law models and the reality-camouflage intelligent transformations of information image[C] //Proceedings of the 2016 International Conference on Network and Information Systems for Computers. Piscataway, NJ: IEEE, 2016: 337-341.
[18] PIKE R, DORWARD S, GRIESEMER R. Interpreting the data: parallel analysis with Sawzall[J]. Scientific Programming, 2005, 13(4):277-298.
[19] LUO T, LEE R, MESNIER M. hStorage-DB: heterogeneity-aware data management to exploit the full capability of hybrid storage systems[J]. Proceedings of the VLDB Endowment, 2012, 5(10):1076-1087.
[20] CHEN S. Cheetah: a high performance, custom data warehouse on top of mapreduce[J]. Proceedings of the VLDB Endowment, 2010, 3(1/2):1459-1468.
[21] LAM W, LIU L, PRASADST S. Muppet mapreduce-style processing of fast data[J]. Proceedings of the VLDB Endowment, 2012, 5(12):1814-1825.
[22] GOODHOPE K, KOSHY J, KREPS J. Building linkedins real-time activity data pipeline[J]. IEEE Data Eng Bull, 2012, 35(2):33-45.
[23] LV Y, DUAN Y, KANG W. Traffic flow prediction with big data: a deep learning approach[J]. IEEE Transactions Intelligent Transportation Systems, 2015, 16(2):865-873.
[1] 史开泉. 大数据结构-逻辑特征与大数据规律[J]. 《山东大学学报(理学版)》, 2019, 54(2): 1-29.
[2] 晏燕,郝晓弘. 差分隐私密度自适应网格划分发布方法[J]. 山东大学学报(理学版), 2018, 53(9): 12-22.
[3] 刘利钊,于佳平,刘健,李俊祎,韩哨兵,许华荣,林怀钏,朱顺痣. 基于量子辐射场的大数据安全存储寻址算法[J]. 山东大学学报(理学版), 2018, 53(7): 65-74.
[4] 王鹤琴,王杨. 基于贝叶斯决策的网格社区案卷分发模型[J]. 山东大学学报 (理学版), 2018, 53(11): 85-94.
[5] 李金海,吴伟志. 形式概念分析的粒计算方法及其研究展望[J]. 山东大学学报(理学版), 2017, 52(7): 1-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王 怡,刘爱莲 . 时标下的蛛网模型[J]. J4, 2007, 42(7): 41 -44 .
[2] 王凤雨. 随机一般多孔介质与快速扩散方程[J]. J4, 2009, 44(10): 1 -3 .
[3] 程智1,2,孙翠芳2,王宁1,杜先能1. 关于Zn的拉回及其性质[J]. J4, 2013, 48(2): 15 -19 .
[4] 赵同欣1,刘林德1*,张莉1,潘成臣2,贾兴军1. 紫藤传粉昆虫与花粉多型性研究[J]. 山东大学学报(理学版), 2014, 49(03): 1 -5 .
[5] 张爱平,李刚 . LR拟正规Ehresmann半群[J]. J4, 2006, 41(5): 44 -47 .
[6] 周伟娜,左连翠*. 几类图的笛卡尔积图的(d,1)-全标号[J]. 山东大学学报(理学版), 2014, 49(04): 24 -28 .
[7] 霍玉洪,季全宝. 一类生物细胞系统钙离子振荡行为的同步研究[J]. J4, 2010, 45(6): 105 -110 .
[8] 张雪凤1,刘鹏1,2. 基于类间差异最大化的加权距离改进K-means算法[J]. J4, 2010, 45(7): 28 -33 .
[9] 杨莹,江龙*,索新丽. 容度空间上保费泛函的Choquet积分表示及相关性质[J]. J4, 2013, 48(1): 78 -82 .
[10] 董丽红1,2,郭双建1. Yetter-Drinfeld模范畴上的弱Hopf模基本定理[J]. J4, 2013, 48(2): 20 -22 .