《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (10): 7-14.doi: 10.6040/j.issn.1671-9352.0.2020.178
张凌,任雪芳*
ZHANG Ling, REN Xue-fang*
摘要: 基于具有动态特征的P-集合模型,针对∧型大数据,定义新概念αF-数据等价类、α(-overF)-数据等价类和(αF,α(-overF))-数据等价类,分析数据边界特征与度量,提出数据推理及推理结构。论文的主要结果是针对数据元的冗余与缺失定义数据边界收缩与扩张的度量,分析数据推理得到数据分类生成定理,设计数据智能检索算法与数据智能检索-识别准则,给出应用。
中图分类号:
[1] 史开泉. 大数据结构-逻辑特征与大数据规律[J] ,山东大学学报(理学版), 2019, 54(2):1-29. SHI Kaiquan. Big data structure-logic characteristics and big data law[J]. Journal of Shandong University(Naturel Science), 2015, 54(2):1-29. [2] 史开泉. P-集合[J]. 山东大学学报(理学版), 2008, 43(11):77-84. SHI Kaiquan. P-sets[J]. Journal of Shandong University(Natural Science), 2008, 43(11):77-84. [3] SHI Kaiquan. P-sets and its applications[J]. Advances in Systems Science and Applications, 2009, 9(2):209-219. [4] 史开泉. P-推理与信息的P-推理发现-辨识[J]. 计算机科学, 2011, 38(7):1-9. SHI Kaiquan. P-reasoning and P-reasoning discovery-identification of information[J]. Computer Science, 2011, 38(7):1-9. [5] 史开泉. P-集合, 逆P-集合与信息智能融合-过滤辨识[J]. 计算机科学,2012, 39(4):1-13. SHI Kaiquan. P-sets, inverse P-sets and the intelligent fusion-filter identification of information[J]. Computer Science, 2012, 39(4):1-13. [6] FAN Chengxian, LIN Hongkang. P-sets and the reasoning-identification of disaster information[J]. International Journal of Convergence Information Technology, 2012, 7(1):337-345. [7] 史开泉. 函数P-集合[J]. 山东大学学报(理学版), 2011, 46(2):62-69. SHI Kaiquan. Function P-sets[J]. Journal of Shandong University(Natural Science), 2011, 46(2):62-69. [8] SHI Kaiquan. Function P-sets[J]. International Journal of Machine Learning and Cybernetics, 2011, 2(4):281-288. [9] TANG Jihua, ZHANG Ling, SHI Kaiquan. Outer P-information law reasoning and its application in intelligent fusion and separating of information law[J]. Microsystem Technologies, 2018, 24(10):4389-4398. [10] 张凌, 任雪芳, 史开泉. 信息规律智能变换-伪装与P-规律增广矩阵[J]. 山东大学学报(理学版), 2016, 51(8):90-97. ZHANG Ling, REN Xuefang, SHI Kaiquan. Intelligent switch-camouflage of information laws and P-law augmented matrices[J]. Journal of Shandong University(Natural Science), 2016, 51(8):90-97. [11] 史开泉. 逆P-集合[J]. 山东大学学报(理学版), 2012, 47(1):98-109. SHI Kaiquan. Inverse P-sets[J]. Journal of Shandong University(Natural Science), 2012, 47(1):98-109. [12] 史开泉. 函数逆P-集合与信息规律融合[J]. 山东大学学报(理学版), 2012, 47(8):73-80. SHI Kaiquan. Function inverse P-sets and information law fusion[J]. Journal of Shandong University(Natural Science), 2012, 47(8):73-80. [13] 任雪芳, 张凌, 史开泉. 基数余-亏与逆P-增广矩阵[J]. 山东大学学报(理学版), 2015, 50(10):13-18, 26. REN Xuefang, ZHANG Ling, SHI Kaiquan. Surplus-deficiency of cardinal number and inverse P-augmented matrices[J]. Journal of Shandong University(Natural Science), 2015, 50(10):13-18, 26. [14] 张凌, 任雪芳. 基数余-亏定理与数据外-内挖掘-分离[J]. 山东大学学报(理学版), 2015, 50(8):90-94. ZHANG Ling, REN Xuefang. Surplus-deficient theorem of cardinal number and data internal-outer mining-separation[J]. Journal of Shandong University(Natural Science), 2015, 50(8):90-94. [15] ZHANG Ling, REN Xuefang, SHI Kaiquan. The dynamic segmentation characteristics of P-augmented matrix and the dynamic intelligent acquisition of P-information[J]. International Journal of Applied Decision Sciences, 2016, 9(4):413-425. [16] REN Xuefang, ZHANG Ling, SHI Kaiquan, et al. Inverse P-augmented matrix method-based the dynamic findings of unknown information[J]. Microsystem Technologies, 2018, 24(10):4187-4192. [17] ZHANG Ling, REN Xuefang, SHI Kaiquan. Inverse P-information law models and the reality-camouflage intelligent transformations of information image[C] //Proceedings of the 2016 International Conference on Network and Information Systems for Computers. Piscataway, NJ: IEEE, 2016: 337-341. [18] PIKE R, DORWARD S, GRIESEMER R. Interpreting the data: parallel analysis with Sawzall[J]. Scientific Programming, 2005, 13(4):277-298. [19] LUO T, LEE R, MESNIER M. hStorage-DB: heterogeneity-aware data management to exploit the full capability of hybrid storage systems[J]. Proceedings of the VLDB Endowment, 2012, 5(10):1076-1087. [20] CHEN S. Cheetah: a high performance, custom data warehouse on top of mapreduce[J]. Proceedings of the VLDB Endowment, 2010, 3(1/2):1459-1468. [21] LAM W, LIU L, PRASADST S. Muppet mapreduce-style processing of fast data[J]. Proceedings of the VLDB Endowment, 2012, 5(12):1814-1825. [22] GOODHOPE K, KOSHY J, KREPS J. Building linkedins real-time activity data pipeline[J]. IEEE Data Eng Bull, 2012, 35(2):33-45. [23] LV Y, DUAN Y, KANG W. Traffic flow prediction with big data: a deep learning approach[J]. IEEE Transactions Intelligent Transportation Systems, 2015, 16(2):865-873. |
[1] | 史开泉. 大数据结构-逻辑特征与大数据规律[J]. 《山东大学学报(理学版)》, 2019, 54(2): 1-29. |
[2] | 晏燕,郝晓弘. 差分隐私密度自适应网格划分发布方法[J]. 山东大学学报(理学版), 2018, 53(9): 12-22. |
[3] | 刘利钊,于佳平,刘健,李俊祎,韩哨兵,许华荣,林怀钏,朱顺痣. 基于量子辐射场的大数据安全存储寻址算法[J]. 山东大学学报(理学版), 2018, 53(7): 65-74. |
[4] | 王鹤琴,王杨. 基于贝叶斯决策的网格社区案卷分发模型[J]. 山东大学学报 (理学版), 2018, 53(11): 85-94. |
[5] | 李金海,吴伟志. 形式概念分析的粒计算方法及其研究展望[J]. 山东大学学报(理学版), 2017, 52(7): 1-12. |
|