您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (4): 37-47.doi: 10.6040/j.issn.1671-9352.0.2021.335

• • 上一篇    

基于三角模的直觉相似度及其应用

李星宇,段景瑶*   

  1. 宝鸡文理学院数学与信息科学学院, 陕西 宝鸡 721013
  • 发布日期:2022-03-29
  • 作者简介:李星宇(1997—), 女, 硕士研究生, 研究方向为不确定性推理. E-mail:lxy010802@163.com*通信作者简介:段景瑶(1983— ), 女, 博士, 讲师, 硕士生导师, 研究方向为不确定性推理. E-mail:Nancy-duan@163.com
  • 基金资助:
    国家自然科学基金资助项目(11626035);宝鸡市科技计划资助项目(2017JH2-22);宝鸡文理学院重点科研资助项目(ZK2017023)

Intuitionistic similarity based on triangular norms and its application

LI Xing-yu, DUAN Jing-yao*   

  1. School of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji 721013, Shaanxi, China
  • Published:2022-03-29

摘要: 为了将直觉模糊集的相似度分析纳入到逻辑推理的框架之中,借助三角模和蕴涵算子以不同的方式构造了两种直觉模糊集的相似度,并证明了其满足相似度的四条公理。作为应用,首先以所构造的相似度为衡量指标解决了一个关于伤寒病症的医疗诊断问题,经过数据分析,得到了与直观吻合的结果。其次,以所构造的相似度为扰动参数,分析了逻辑连接词直觉三角模和直觉蕴涵的鲁棒性,进而对直觉模糊取式问题的全蕴涵推理方法和推理合成规则方法进行了鲁棒性估计,结果表明当输入的扰动非常小时,输出的结果变化也很小,两种推理方法均具有良好的鲁棒性。

关键词: 直觉模糊集, 相似度, 三角模, 鲁棒性分析

Abstract: In order to incorporate the similarity analysis of intuitionistic fuzzy sets into the framework of logical reasoning, the two similarities of intuitionistic fuzzy sets based on triangular norm and implication operator are constructed in different ways and proved that they satisfy the four axioms of similarity. As an application, firstly, a medical diagnosis problem about typhoid fever is solved by using the constructed similarity as a measurement, and the result consistent with the intuition by using data analysis. Secondly, the robustness of logical connectives, intuitionistic triangular norm and intuitionistic implication, are analyzed by using the constructed similarity as the disturbance parameter. Furthermore, the robustness of the full implication inference method and the compositional rule of inference method of the intuitionistic fuzzy modus ponens problem are analyzed. The results show that when the input disturbance is very small, the output result changes very little. Both inference methods have good robustness.

Key words: intuitionistic fuzzy set, similarity, triangular norm, robustness analysis

中图分类号: 

  • O159
[1] ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(3):338-353.
[2] ATANASSOV K. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20(1):87-96.
[3] 郑慕聪, 史忠科, 刘艳. 剩余型直觉模糊推理的三I方法[J]. 中国科学(信息科学), 2013, 43(6):810-820. ZHENG Mucong, SHI Zhongke, LIU Yan. Triple I method of residual intuitionistic fuzzy reasoning[J]. Scientia Sinica Informationis, 2013, 43(6):810-820.
[4] PAUL A E, IDOKO C O. Intuitionistic fuzzy statistical correlation algorithm with applications multicriteria based decision-making processes[J]. International Journal of Intelligent Systems, 2021, 36(3):1386-1407.
[5] AUGUSTINE P E. Novel correlation coefficient for intuitionistic fuzzy sets and its application to multicriteria decision-making problems[J]. International Journal of Fuzzy System Applications, 2021, 10(2):39-58.
[6] WEI Anpeng, LI Dengfeng, LIN Pingping, et al. An information-based score function of interval-valued intuitionistic fuzzy sets and its application in multiattribute decision making[J]. Soft Computing, 2020, 25(3):1913-1923.
[7] CAMPAGNER A, DORIGATTI V, CIUCCI D. Entropy-based shadowed set approximation of intuitionistic fuzzy sets[J]. International Journal of Intelligent Systems, 2020, 35(12):2117-2139.
[8] CHE Renqing, SUO Chunfeng, LI Yongming. An approach to construct entropies on interval-valued intuitionistic fuzzy sets by their distance functions[J]. Soft Computing, 2021, 25(1):1-11.
[9] LI Dengfeng, CHENG Chuntian. New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions[J]. Pattern Recognition Letters, 2002,23(2):221-225.
[10] MITCHELL H B. On the Dengfeng-Chuntian similarity measure and its application to pattern recognition[J]. Pattern Recognition Letters, 2003, 24(16):3101-3104.
[11] WANG Weiqiong, XIN Xiaolong. Distance measure between intuitionistic fuzzy sets[J]. Pattern Recognition Letters, 2005, 26(13):2063-2069.
[12] DAI Songsong, PEI Daowu, GUO Donghui. Robustness analysis of full implication inference method[J]. International Journal of Approximate Reasoning, 2013, 54(5):653-666.
[13] DUAN Jingyao, LI Yongming. Robustness analysis of logic metrics on F(X)[J]. International Journal of Approximate Reasoning, 2015, 61(6):33-42.
[14] 王国俊, 段景瑶. 适宜于展开模糊推理的两类模糊度量空间[J]. 中国科学(信息科学), 2014, 44(5):623-632. WANG Guojun, DUAN Jingyao. Two kinds of fuzzy metric spaces suitable for fuzzy reasoning[J]. Scientia Sinica Informationis, 2014, 44(5):623-632.
[15] 段景瑶. 基于模糊逻辑等价算子的直觉相似度[J]. 模糊系统与数学, 2017, 31(1):109-122. DUAN Jingyao. Intuitionistic similarities based on the fuzzy logical equivalence operators[J]. Fuzzy System and Mathematics, 2017, 31(1):109-122.
[16] KLEMENT E P, MESIAR R, PAP E. Triangular norms[M]. Boston: Kluwer, 2000.
[17] 裴道武. 基于三角模的模糊逻辑理论及其应用[M]. 北京: 科学出版社, 2013. PEI Daowu. Fuzzy logic theory based on triangular module and its application[M]. Beijing: Science Press, 2013.
[18] 王国俊. 数理逻辑引论与归结原理 [M]. 北京:科学出版社, 2006. WANG Guojun. Introduction to mathematical logic and resolution principle[M]. Beijing: Science Press, 2006.
[19] DUBOIS D, PRADE H. Fuzzy sets in approximate reasoning[J]. Fuzzy Sets and Systems, 1991, 40(1):143-244.
[20] ZADEH L A. Toward extended fuzzy logic: a first step[J]. Fuzzy Sets and Systems, 2009, 160(21):3175-3181.
[21] 王国俊. 模糊推理的全蕴涵三I算法[J]. 中国科学E辑(技术科学), 1999, 29(1):43-53. WANG Guojun. Full implication triple I algorithm for fuzzy reasoning[J]. Science in China Series E(Technical Sciences), 1999, 29(1):43-53.
[22] PEI Daowu. Unified full implication algorithms of fuzzy reasoning[J]. Information Sciences, 2008, 178(2):520-530.
[23] LIU Huawen, WANG Guojun. Continuity of triple I methods based on several implications[J]. Computers & Mathematics with Applications, 2008, 56(8):2079-2087.
[24] ZHENG Mucong, SHI Zhongke, LIU Yan. Triple I method of approximate reasoning on Atanassovs intuitionistic fuzzy sets[J]. International Journal of Approximate Reasoning, 2014, 55(6):1369-1382.
[25] ZHENG Mucong, LIU Yan. Multiple-rules reasoning based on triple I method on Atanassovs intuitionistic fuzzy sets[J]. International Journal of Approximate Reasoning, 2019, 113(6):196-206.
[26] 惠小静, 井美, 王蓉. 基于直觉模糊推理(1,2,2)-α型泛三I算法的鲁棒性[J]. 电子学报, 2019, 47(2):410-416. HUI Xiaojing, JING Mei, WANG Rong. Robustness of(1,2,2)-α-type pan triple I algorithm based on intuitionistic fuzzy reasoning[J]. Journal of Electronics, 2019, 47(2):410-416.
[27] 井美, 惠小静, 王蓉. 基于相似度的直觉模糊推理反向三I算法的鲁棒性[J]. 电子学报, 2020, 48(2):265-271. JING Mei, HUI Xiaojing, WANG Rong. Robustness of inverse triple I algorithm for intuitionistic fuzzy reasoning based on similarity[J]. Journal of Electronics, 2020, 48(2):265-271.
[28] LUO Minxia, ZHAO Ruirui. A distance measure between intuitionistic fuzzy sets and its application in medical diagnosis[J]. Artificial Intelligence in Medicine, 2018, 89(3):34-39.
[29] 周红军. 概率计量逻辑及其应用[M]. 北京: 科学出版社, 2015. ZHOU Hongjun. Probability measurement logic and its application[M]. Beijing: Science Press, 2015.
[1] 郑焕科,张晶,杨亚琦,熊梅惠. 多属性决策的时间不确定事件流时序推理方法[J]. 《山东大学学报(理学版)》, 2020, 55(7): 67-80.
[2] 孙倩倩,李小南. 区间毕达哥拉斯模糊集的信息度量及其应用[J]. 《山东大学学报(理学版)》, 2019, 54(9): 43-53.
[3] 张聪,裴家欢,黄锴宇,黄德根,殷章志. 基于语义图优化算法的中文微博观点摘要研究[J]. 山东大学学报(理学版), 2017, 52(7): 59-65.
[4] 黄栋,徐博,许侃,林鸿飞,杨志豪. 基于词向量和EMD距离的短文本聚类[J]. 山东大学学报(理学版), 2017, 52(7): 66-72.
[5] 于俊红,周红军. (T,N)-蕴涵及其基本性质[J]. 山东大学学报(理学版), 2017, 52(11): 71-81.
[6] 黄淑芹,徐勇,王平水. 基于概率矩阵分解的用户相似度计算方法及推荐应用[J]. 山东大学学报(理学版), 2017, 52(11): 37-43.
[7] 韩亮,刘华文. 有限链上逻辑算子的分配性方程求解[J]. 山东大学学报(理学版), 2014, 49(2): 29-35.
[8] 马成龙, 姜亚松, 李艳玲, 张艳, 颜永红. 基于词矢量相似度的短文本分类[J]. 山东大学学报(理学版), 2014, 49(12): 18-22.
[9] 吴熙曦, 李炳龙, 张天琪. 基于KNN的Android智能手机微信取证方法[J]. 山东大学学报(理学版), 2014, 49(09): 150-153.
[10] 王少鹏, 彭岩, 王洁. 基于LDA的文本聚类在网络舆情分析中的应用研究[J]. 山东大学学报(理学版), 2014, 49(09): 129-134.
[11] 张春英, 王立亚, 刘保相. 基于覆盖的区间概念格动态压缩原理与实现[J]. 山东大学学报(理学版), 2014, 49(08): 15-21.
[12] 石素玮, 李进金, 谭安辉. 一类覆盖粗糙直觉模糊集模型的模糊粗糙度和粗糙熵[J]. 山东大学学报(理学版), 2014, 49(08): 86-91.
[13] 巩增泰,齐颖. 基于Archimedean三角模的广义直觉模糊不确定语言变量集成方法[J]. J4, 2013, 48(3): 53-63.
[14] 左卫兵. 模糊命题逻辑L*中公式的条件随机真度[J]. J4, 2012, 47(6): 121-126.
[15] 李晓萍1,孙刚2. 直觉模糊全不变子群与特征子群[J]. J4, 2012, 47(2): 119-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!